

US010240130B2

(12) United States Patent

Xie et al.

(54) CDNA CLONE-LAUNCHED PLATFORM FOR HIGH-YIELD PRODUCTION OF INACTIVATED ZIKA VIRUS

- (71) Applicant: THE BOARD OF REGENTS OF THE UNIVERSITY OF TEXAS SYSTEM, Austin, TX (US)
- (72) Inventors: Xuping Xie, Galveston, TX (US); Chao Shan, Galveston, TX (US); Pei-Yong Shi, Galveston, TX (US)
- (73) Assignee: THE BOARD OF REGENTS OF THE UNIVERSITY OF TEXAS SYSTEM, Austin, TX (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.
- (21) Appl. No.: 15/897,488
- (22) Filed: Feb. 15, 2018

(65) **Prior Publication Data**

US 2018/0273913 A1 Sep. 27, 2018

Related U.S. Application Data

- (60) Provisional application No. 62/459,367, filed on Feb. 15, 2017.
- (51) Int. Cl.

A61K 39/00	(2006.01)
A61K 39/12	(2006.01)
C07K 14/005	(2006.01)
C12N 7/00	(2006.01)
A61K 31/70	(2006.01)
A61P 31/14	(2006.01)

- (58) Field of Classification Search
 CPC A61K 2300/00; A61K 39/12; A61K 39/00; C12N 7/00; C07K 14/005
 See application file for complete search history.

(56) **References Cited**

U.S. PATENT DOCUMENTS

2010/0104598 A1 4/2010 Whitehead et al.

OTHER PUBLICATIONS

Abbink, Peter, et al. "Protective efficacy of multiple vaccine platforms against Zika virus challenge in rhesus monkeys." Science (2016): aah6157.

(10) Patent No.: US 10,240,130 B2 (45) Date of Patent: Mar. 26, 2019

Atieh, Théreèse, et al. "Simple reverse genetics systems for Asian and African Zika viruses." Scientific reports 6 (2016): 39384. Avirutnan, Panisadee, et al. "Binding of flavivirus nonstructural protein NS1 to C4b binding protein modulates complement activation." The Journal of Immunology (2011): 1100750.

Brown, W. Clay, et al. "Extended surface for membrane association in Zika virus NS1 structure." Nature structural & molecular biology 23.9 (2016): 865.

Chung, Kyung Min, et al. "West Nile virus nonstructural protein NS1 inhibits complement activation by binding the regulatory protein factor H." Proceedings of the National Academy of Sciences 103.50 (2006): 19111-19116.

Dawes, Brian E., et al. "Research and development of Zika virus vaccines." npj Vaccines 1 (2016): 16007.

Dick, G. W. A., S. F. Kitchen, and A. J. Haddow. "Zika virus (I). Isolations and serological specificity." Transactions of the royal society of tropical medicine and hygiene 46.5 (1952): 509-520.

Dowd, Kimberly A., et al. "Rapid development of a DNA vaccine for Zika virus." Science (2016): aai9137.

World Health Organization. "Acceptability of cell substrates for production of biologicals: report of a WHO study group [meeting held in Geneva from 18 to 19 Nov. 1986]." (1987).

Hamel, Rodolphe, et al. "Biology of Zika virus infection in human skin cells." Journal of virology (2015): JVI-00354.

Heang, Vireak, et al. "Zika virus infection, Cambodia, 2010." Emerging infectious diseases 18.2 (2012): 349.

Kostyuchenko, Victor A., et al. "Structure of the thermally stable Zika virus." Nature 533.7603 (2016): 425.

Kümmerer, Beate M., and Charles M. Rice. "Mutations in the yellow fever virus nonstructural protein NS2A selectively block production of infectious particles." Journal of virology 76.10 (2002): 4773-4784.

Lanciotti, Robert S., et al. "Phylogeny of Zika virus in western hemisphere, 2015." Emerging infectious diseases 22.5 (2016): 933. Larocca, Rafael A., et al. "Vaccine protection against Zika virus from Brazil." Nature 536.7617 (2016): 474-478.

Lazear, Helen M., et al. "A mouse model of Zika virus pathogenesis." Cell host & microbe 19.5 (2016): 720-730.

Leung, Jason Y., et al. "Role of nonstructural protein NS2A in flavivirus assembly." Journal of virology 82.10 (2008): 4731-4741. Leventis, Peter A., and Sergio Grinstein. "The distribution and function of phosphatidylserine in cellular membranes." Annual review of biophysics 39 (2010): 407-427.

Lindenbach, Brett D., and Charles M. Rice. "trans-Complementation of yellow fever virus NS1 reveals a role in early RNA replication." Journal of virology 71.12 (1997): 9608-9617.

Lindenbach, Brett D., and Charles M. Rice. "Genetic interaction of flavivirus nonstructural proteins NS1 and NS4A as a determinant of replicase function." Journal of virology73.6 (1999): 4611-4621.

(Continued)

Primary Examiner — Barry A Chestnut

(74) Attorney, Agent, or Firm — Robin L. Teskin; LeClairRyan PLLC

(57) **ABSTRACT**

The invention generally relates to the development of variant Zika strains, cDNA clones and mRNA transcripts that contain specific mutations in the Zika ORF, and methods for producing high yields of Zika viruses ("ZIKVs") using these variant cDNA clones, transcripts and strains. The produced ZIKVs can be used for the manufacture of purified inactivated vaccines (PIVs), which may be useful for treating ZIKV-related diseases and for providing immunoprotection against ZIKV.

20 Claims, 9 Drawing Sheets

Specification includes a Sequence Listing.

(56) **References Cited**

OTHER PUBLICATIONS

Perera-Lecoin, Manuel, et al. "Flavivirus entry receptors: an update." Viruses 6.1 (2013): 69-88.

Petersen, Lyle R., et al. "Zika virus." New England Journal of Medicine 374.16 (2016): 1552-1563.

Rossi, Shannan L., et al. "Characterization of a novel murine model to study Zika virus." The American journal of tropical medicine and hygiene 94.6 (2016): 1362-1369.

Scaturro, Pietro, et al. "Dengue virus non-structural protein 1 modulates infectious particle production via interaction with the structural proteins." PLoS pathogens 11.11 (2015): e1005277.

Schuler-Faccini, Lavinia. "Possible association between Zika virus infection and microcephaly—Brazil, 2015." MMWR. Morbidity and mortality weekly report 65 (2016).

Schwarz, Megan C., et al. "Rescue of the 1947 Zika virus prototype strain with a cytomegalovirus promoter-driven cDNA clone." mSphere 1.5 (2016): e00246-16.

Shan, Chao, et al. "Zika virus: diagnosis, therapeutics, and vaccine." ACS infectious diseases 2.3 (2016): 170-172.

Shan, Chao, et al. "An infectious cDNA clone of Zika virus to study viral virulence, mosquito transmission, and antiviral inhibitors." Cell host & microbe 19.6 (2016): 891-900.

Sirohi, Devika, et al. "The 3.8 Åresolution cryo-EM structure of Zika virus." Science 352.6284 (2016): 467-470.

Tsetsarkin, Konstantin A., et al. "A full-length infectious cDNA clone of Zika virus from the 2015 epidemic in Brazil as a genetic platform for studies of virus-host interactions and vaccine development." MBio 7.4 (2016): e01114-16.

Weger-Lucarelli, James, et al. "Development and characterization of recombinant virus generated from a New World Zika virus infectious clone." Journal of virology 91.1 (2017): e01765-16.

Xie, Xuping, et al. "Membrane topology and function of dengue virus NS2A protein." Journal of virology (2013): JVI-02424. Xie, Xuping, et al. "Zika virus replicons for drug discovery."

Xie, Xuping, et al. "Zika virus replicons for drug discovery." EBioMedicine 12 (2016): 156-160.

Youn, Soonjeon, et al. "Evidence for a genetic and physical interaction between the NS1 and NS4B that modulates replication of West Nile virus." Journal of virology (2012): JVI-00157.

Zou, Jing, et al. "Dimerization of flavivirus NS4B protein." Journal of virology (2014): JVI-02782.

Taglietti, M., C. N. Hawkins, and J. Rao. "Novel topical drug delivery systems and their potential use in acne vulgaris." Skin Therapy Lett 13.5 (2008): 6-8.

Wang, Lulan, et al. "From mosquitos to humans: genetic evolution of Zika virus." Cell host & microbe 19.5 (2016): 561-565.

Xie X, et al. "Understanding Zika Virus Stability and Developing a Chimeric Vaccine through Functional Analysis," MBio. Feb. 7, 2017;8(1). pii: e02134-16.

Manzano M, et al. "Identification of cis-acting elements in the 3'-untranslated region of the dengue virus type 2 RNA that modulate translation and replication," J Biol Chem. Jun. 24, 2011;286(25):22521-34.

lsssfates

33, 82

53

58

88, 68

Parental

Z38.V

isolates

\$3-3

Figure 1B

Nucleotide acid changes

38 ZIKV 320moc

648564

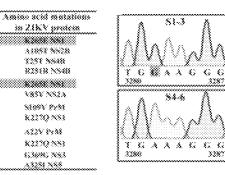
326880

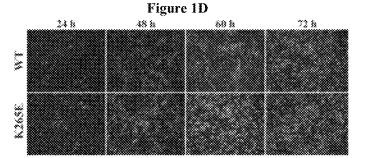
126522

038603

\$?\$XC

 $\Delta 338880$

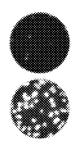

C3383


A338993

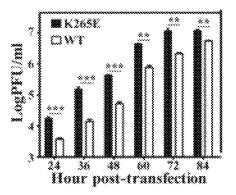
037283

68683

Figure 1C


RNA copies /PFU (*10³) 1.03 ± 0.08

50 A. S.



 0.98 ± 0.06

Figure 1E

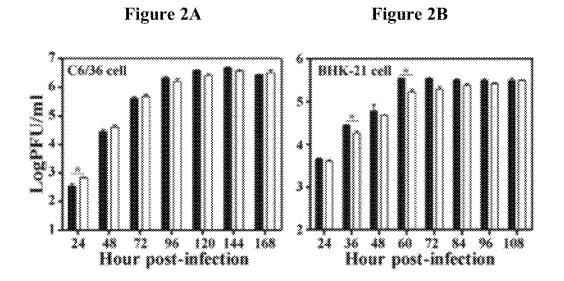
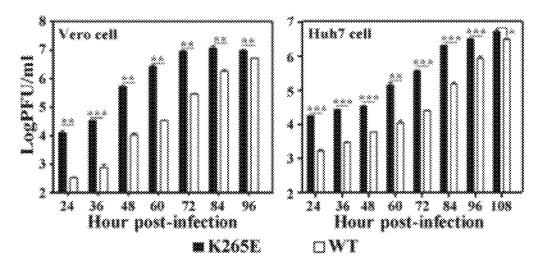
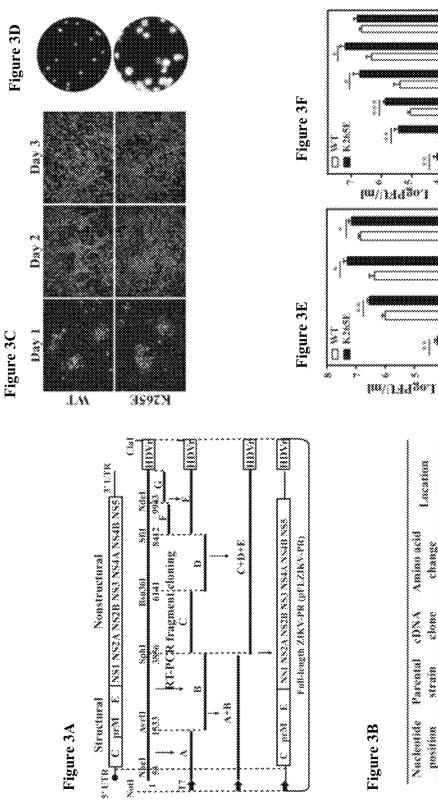
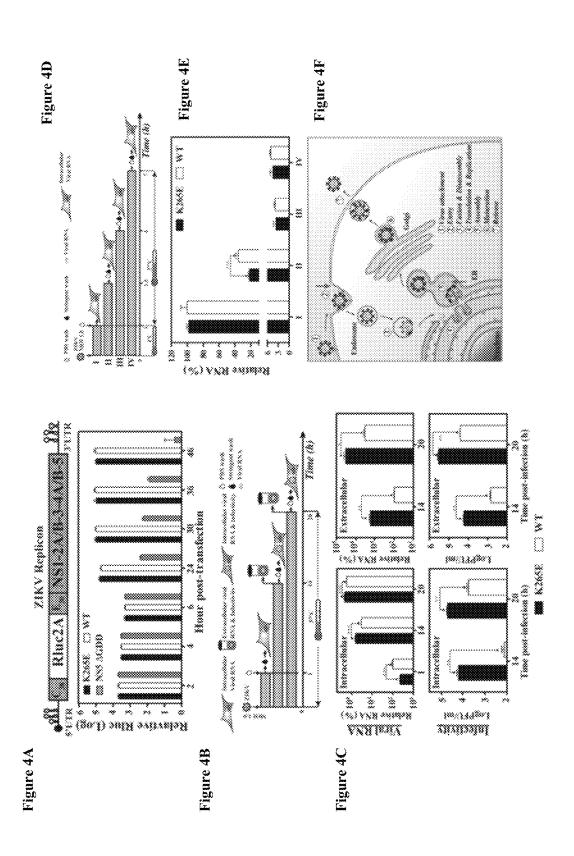



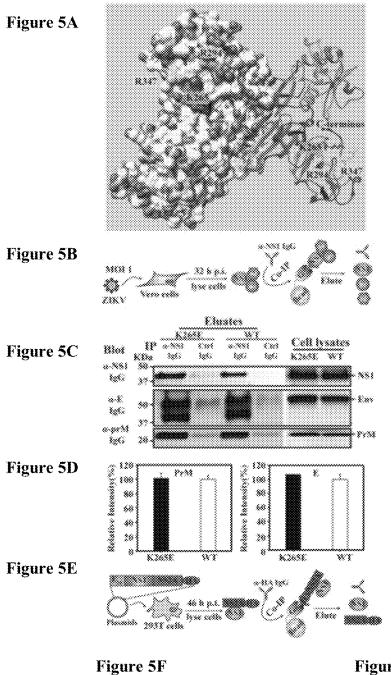
Figure 2C

Hour post-infection 8


Ş

×


Day post-transfection


**

*

Vactoride	Parculai	60XA	Amino acid	S amontinum
position	strain	clane	change	xexes
1337	*	ು	Name	**
276X	ĸ	ýw	None	ž
1771	*	္	Neme	Z
X111X	jan.	æ	None	ŶZ
01.7K	ŝ	÷	Normal Section	11 I.

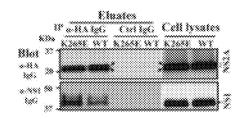
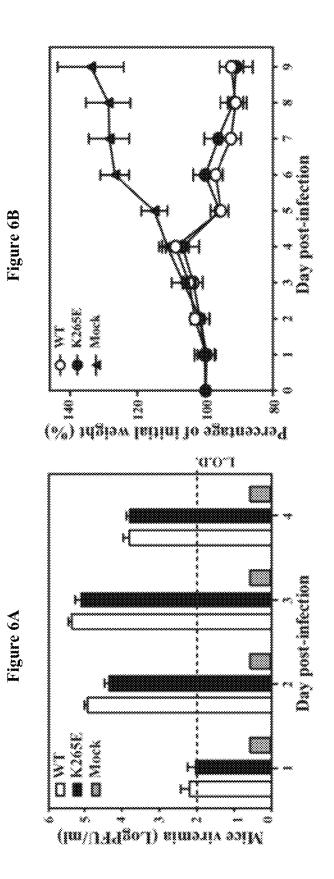
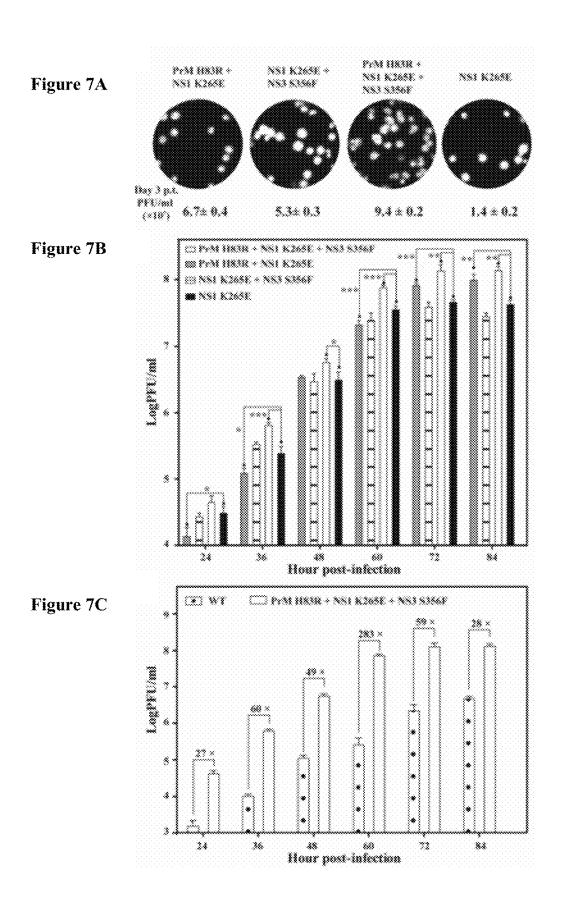




Figure 5G

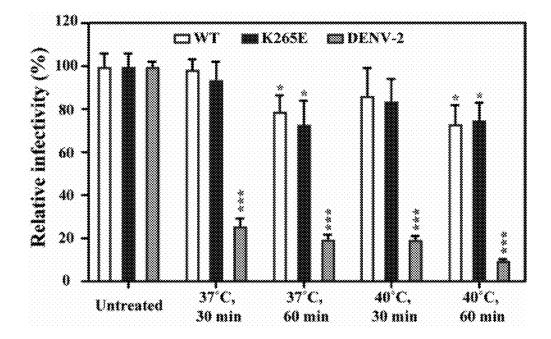
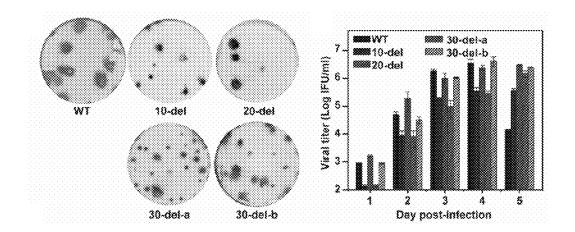



Figure 9A

Figure 9B

Figure 9C

10-del	20-døl	30-del-a	30-del-b
1 11 11 11	1 11 11	1 11 11	i # #
R283W H219L H219L	T315I K443N K443N	H401Y H401Y 😁	A501T A501T A501T
E R283W			
~ L441L K443N			
NS1 R103K	W98L		

20

CDNA CLONE-LAUNCHED PLATFORM FOR HIGH-YIELD PRODUCTION OF INACTIVATED ZIKA VIRUS

RELATED APPLICATIONS

This application claims priority to U.S. Provisional Application No. 62/459,367 filed on Feb. 15, 2017, the contents of which are incorporated by reference in their entirety herein.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

The invention was funded by NIH grant R01AI087856, Pan American Health Organization grant SCON2016-01353, and NIH grant AI120942.

SEQUENCE LISTING

This application includes a sequence listing which has been submitted via EFS-Web in a file named "4956101205.txt" created Jun. 6, 2018 and having a size of 85,243 bytes, which is hereby incorporated by reference in its entirety.

FIELD OF THE INVENTION

The invention generally relates to the development of variant Zika virus (ZIKV) strains, variant Zika genomes ³⁰ (cDNA clones) and Zika RNA transcripts that contain specific substitution mutations, and methods for producing high yields of ZIKV using these variant cDNA clones, RNA transcripts and Zika strains. These variant cDNA clones, RNA transcripts and Zika strains can be used for the ³⁵ manufacture of purified inactivated vaccines (NV), which may be useful for treating ZIKV related diseases and providing immunoprotection against ZIKV.

BACKGROUND OF THE INVENTION

Zika virus (ZIKV) has recently caused explosive outbreaks in the Americas and is unexpectedly associated with congenital microcephaly and other fetal abnormalities as well as Guillain Barre syndrome (Schuler-Faccini et al., 45 2016). ZIKV was first isolated from a sentinel rhesus macaque in 1947 in the Zika Forest of Uganda (Dick et al., 1952). Human ZIKV infections have only sporadically been detected for decades. However, since 2007, ZIKV has rapidly spread across islands in the South Pacific and into the 50 Americas, causing the outbreak on Yap Island in Micronesia, a subsequent outbreak in French Polynesia, and explosive, widespread epidemics in the Americas (Petersen et al., 2016). The World Health organization (http://www.who.int/ emergencies/zika-virus/situation-report/6-october-2016/en/) 55 has reported over 73 countries and territories with active ZIKV outbreaks/epidemics. Despite urgent medical needs, neither clinically approved vaccine nor antiviral is available for prevention and treatment.

ZIKV is a mosquito-borne member from the genus flavivirus within the family Flaviviridae. Besides ZIKV, many other flaviviruses are significant human pathogens, including the four serotypes of dengue (DENV-1 to -4), yellow fever (YFV), West Nile (WNV), Japanese encephalitis (JEV), and tick-borne encephalitis (TBEV) viruses. Flaviviruses have a positive-sense single-stranded RNA genome approximately 11,000 nucleotides in length. The genome 2

contains a 5' untranslated region (UTR), single open-reading frame (ORF), and 3' UTR. The ORF encodes three structural (capsid [C], precursor membrane [prM], and envelope [E]) and seven non-structural (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) proteins. The structural proteins form virus particles and function in virus entry into cells. The nonstructural proteins participate in viral replication, virion assembly, and evasion of host innate immune responses (Lindenbach, 2013). Like other flaviviruses, ZIKV enters cells through the receptor-mediated endocytosis. After low pHinduced fusion with the endosome membrane, flaviviruses release and translate their genomic RNA in the endoplasmic reticulum (ER). Viral RNA replication occurs in the virusinduced replication complexes formed in the ER membrane. Progeny viruses form on the ER-derived membrane as immature virus particles, in which prM/E heterodimers form trimeric spikes with icosahedral symmetry. After removal of the pr from the prM by host furin protease during the transit through the Golgi network, the immature, non-infectious virions become mature infectious viruses. Finally, progeny virions are released through an exocytosis pathway (Lindenbach, 2013). Rapid progress has been made on ZIKV research in the past two years, including the high-resolution structures of virus (Kostyuchenko et al., 2016; Sirohi et al., 2016), reverse genetic systems (Atieh et al., 2016; Schwarz et al., 2016; Shan et al., 2016b; Tsetsarkin et al., 2016; Weger-Lucarelli et al., 2017; Xie et al., 2016), animal models (Lazear et al., 2016; Rossi et al., 2016), and vaccine development (Abbink et al., 2016; Dowd et al., 2016; Larocca et al., 2016).

Development of an effective and affordable ZIKV vaccine is a public health priority. Multiple strategies have been taken, including DNA- or viral vector-expressing subunit, chimeric, and live-attenuated vaccines (Dawes et al., 2016).
³⁵ Three frontrunner candidates, including two DNA vaccines expressing viral structural proteins prM and E (Dowd et al., 2016; Larocca et al., 2016) and one purified inactivated ZIKV vaccine (PIV) based on Puerto Rico strain PRV-ABC59 (Abbink et al., 2016), protect monkeys from ZIKV challenge. These frontrunners are currently in phase I clinical trials.

The present invention addresses the need for technologies that can increase the yield of virus production to improve accessibility of inactivated vaccines and reduce costs without compromising vaccine immunogenicity.

BRIEF SUMMARY OF THE INVENTION

The invention in general relates to variant Zika virus (ZIKV) cDNA clones, RNA transcripts of these cDNA clones, and variant ZIKV strains which have been mutated to introduce at least one substitution mutation in at least one of the encoded ZIKV proteins, wherein said at least one substitution mutation comprises one or more of the following: NS1 K265E, prM H83R and NS3 S356F.

In some exemplary embodiments the cDNA clone, RNA transcript, or strain will comprise an NS1 K265E substitution mutation.

In some exemplary embodiments the encoded ZIKV proteins in the variant Zika virus (ZIKV) cDNA clone, RNA transcript of the cDNA clone, or variant ZIKV strain will comprise one of the following combinations of substitution mutations: (a) NS1 K265E, prM H83R and NS3 S356F; (b) NS1 K265E and prM H83R; or (c) NS1 K265E and NS3 S356F.

In some exemplary embodiments the encoded ZIKV proteins in the variant Zika virus (ZIKV) cDNA clone, RNA

transcript of the cDNA clone, or variant ZIKV strain comprising any of the afore-mentioned substitutions may further comprise one or more other substitution mutations such as prM H83R, NS3 S356F, E R283W, E H219L, E L441L,E K443N, E T315I, E H401Y, E A501T, NS1 R103K and NS1 5 W98L.

In some embodiments the variant Zika virus (ZIKV) cDNA clone, RNA transcript of the cDNA clone, or variant ZIKV strain comprising any of the afore-mentioned substitutions may comprise a variant of one of the following: a 10 cDNA clone of a North or South American ZIKV strain, an RNA transcript of the cDNA clone of a North or South American ZIKV strain, or a North or South American ZIKV strain.

In some embodiments the variant Zika virus (ZIKV) 15 transcript, or strain. cDNA clone, RNA transcript of the cDNA clone, or variant ZIKV strain may comprise a variant of one of the following: (ZIKV) cDNA clone

- a cDNA clone of a strain selected from the group con-MR766-NIID, P6-740, sisting of ArD7117 IbH 30656. ArB1362. ARB13565, ARB7701, 20 ARB15076, ArD_41519, ArD128000, ArD158084, ArD157995, FSM, FSS13025, PHL/2012/CPC-0740-Asian, H/PF/2013, PLCal_ZV, Haiti/1225/2014, SV0127_14 Asian, Natal_RGN_Asian, Brazil_ ZKV2015 BeH815744, 25 Asian, ZikaSPH2015, BeH819015, BeH819966, BeH823339, BeH828305, SSABR1-Asian, FLR, 103344, 8375, PRVABC59, Z1106033, MRS_OPY_Martinique, VE_Ganxian_Asian, GD01_Asian, GDZ16001, ZJO3, Rio-U1 and Rio-S1:
- an RNA transcript of the cDNA clone of a strain selected from the group consisting of MR766-NIID, P6-740, ARB13565, ArD7117, IbH_30656, ArB1362, ARB7701, ARB15076, ArD_41519, ArD128000, ArD158084, ArD157995, FSM, FSS13025, PHL/2012/ 35 CPC-0740-Asian, H/PF/2013, PLCal_ZV, Haiti/1225/ Natal_RGN_Asian, 2014, SV0127_14_Asian, Brazil ZKV2015 Asian, ZikaSPH2015, BeH815744, BeH819015, BeH819966, BeH823339, BeH828305, SSABR1-Asian, FLR, 103344, 8375, PRVABC59, 40 Z1106033, MRS_OPY_Martinique, VE_Ganxian_Asian, GD01 Asian, GDZ16001, ZJO3, Rio-U1 and Rio-S1; or
- a strain selected from the group consisting of MR766-NIID, P6-740, ArD7117, IbH_30656, ArB1362, 45 ARB13565, ARB7701, ARB15076, ArD_41519, ArD128000. ArD158084. ArD157995. FSM. FSS13025, PHL/2012/CPC-0740-Asian, H/PF/2013, PLCal_ZV, Haiti/1225/2014, SV0127_14_Asian, Natal_RGN_Asian, Brazil_ZKV2015_Asian, 50 ZikaSPH2015, BeH815744, BeH819015, BeH819966, BeH823339, BeH828305, SSABR1-Asian, FLR, 103344, 8375, PRVABC59, Z1106033, MRS_OPY_ Martinique, VE_Ganxian_Asian, GD01_Asian, GDZ16001, ZJO3, Rio-U1 and Rio-S1. 55

In some exemplary embodiments the variant Zika virus (ZIKV) cDNA clone, RNA transcript of the cDNA clone, or variant ZIKV strain comprising any of the afore-mentioned substitutions will comprise a variant of PRVABC59 or FSS13025.

In some exemplary embodiments the variant Zika virus (ZIKV) cDNA clone, RNA transcript of the cDNA clone, or variant ZIKV strain comprising any of the afore-mentioned substitutions may provide for increased yield of ZIKV production in cells as compared to the corresponding wild-65 type ZIKV cDNA clone, RNA transcript, or strain lacking these substitution mutations; and/or may provide for

4

enhanced ZIKV assembly as compared to a corresponding wildtype ZIKV cDNA clone, RNA transcript, or strain lacking these substitution mutations, e.g., wherein the cells used to produce said variant ZIKV may be selected from any one of the following types of cells: (i) eukaryotic cells; (ii) mammalian cells; (iii) mouse or human cells; (iv) Vero cells, Huh7 cells, LLC-MK-2 cells, Hep-2 cells, LF 1043 (HEL) cells, MRC-5 cells, WI-38 cells, tMK cells, 293 T cells, QT 6 cells, QT 35 cells, or chicken embryo fibroblasts (CEF); and (v) Vero cells or Huh7 cells.

In some exemplary embodiments the variant Zika virus (ZIKV) cDNA clone, RNA transcript of the cDNA clone, or variant ZIKV strain comprising any of the afore-mentioned substitutions will comprise an infectious cDNA clone, RNA transcript, or strain.

In some exemplary embodiments the variant Zika virus (ZIKV) cDNA clone, RNA transcript of the cDNA clone, or variant ZIKV strain comprising any of the afore-mentioned substitutions will be further modified to include at least one additional mutation which results in a substitution, addition or deletion mutation in at least one Zika protein, preferably NS1, NS3 or prm, wherein said additional modification does not adversely impact the efficacy of the resultant cDNA clone, RNA transcript, or strain for use in vaccines.

In some exemplary embodiments the invention provides methods for producing ZIKV variants for use in vaccine manufacture, such methods in general comprising producing additional copies of any of the afore-mentioned variant Zika virus (ZIKV) cDNA clone, RNA transcript of the cDNA clone, or variant ZIKV strain comprising any of the aforementioned substitutions in a suitable system thereby obtaining additional ZIKV variants suitable for use in the manufacture of ZIKV vaccines. In preferred exemplary embodiments the suitable system will comprise producing the ZIKV variants in suitable cells, e.g., cells selected from one of the following groups: (i) eukaryotic cells; (ii) mammalian cells; (iii) mouse or human cells; (iv) Vero cells, Huh7 cells, LLC-MK-2 cells, Hep-2 cells, LF 1043 (HEL) cells, MRC-5 cells, WI-38 cells, tMK cells, 293 T cells, QT 6 cells, QT 35 cells, or chicken embryo fibroblasts (CEF); and (v) Vero cells or Huh7 cells, optionally wherein the produced ZIKV variants are attenuated or inactivated.

In some exemplary embodiments the invention provides a variant ZIKV cDNA clone, RNA transcript of the cDNA clone, or variant ZIKV strain comprising a substitution mutation corresponding to A3282G in the ZIKV genome, wherein the A3282G substitution results in a K265E substitution in the NS1 protein expressed from the cDNA clone, RNA transcript or strain.

In some exemplary embodiments the invention provides immunogenic compositions comprising a variant ZIKV strain containing any of the afore-mentioned substitutions and at least one pharmaceutically acceptable carrier or excipient, optionally wherein the strain is attenuated or inactivated, and further optionally which is suitable for parenteral or enteral administration.

In some exemplary embodiments the invention provides methods for eliciting an immune response in a subject in need thereof by administering a composition comprising a oprophylactically or therapeutically effective amount of a variant ZIKV strain containing any of the afore-mentioned substitutions, or an immunogenic composition containing same as above-described, wherein the ZIKV strain is attenuated or inactivated. In some exemplary embodiments the foilnowing: (i) a CD8⁺ T cell response, an antibody response, and/or a cellular immune response against ZIKV; (ii) a neutralizing antibody titer equivalent to that of wildtype ZIKV infection; (iii) prevention of congenital ZIKV syndrome and/or microcephaly; and/or (iv) prevention of viremia in a subject after subsequent challenge with a wildtype ZIKV strain, optionally a human subject, further optionally 5 a pregnant female.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A-G contains identification and characterization of 10 NS1 K265E mutant ZIKV strain FSS13025. (A) Plaque morphologies after plaque purification. Plaques were developed on day 4 post-infection. (B) Sequence comparison of the isolates S1-6 with parental ZIKV strain FSS13025 (GenBank number KU955593.1). The nucleotide acid and 15 amino acid changes in associated ZIKV proteins are shown. The NS1 K265E mutation is shadowed in gray. (C) cDNA sequence chromatogram of positions 3280 to 3287 in ZIKV. The A3283G mutation is highlighted. (D) Examination of E protein expression by immunofluorescence analysis (IFA). 20 Vero cells were electroporated with in vitro-transcribed genome-length ZIKV FSS13025 (WT or K265E mutant) RNA. Intracellular E protein expression was monitored by IFA using 4G2 antibody. (E) Plaque morphologies of recombinant WT or NS1 K265E ZIKV strain FSS13025. Plaques 25 were developed on day 4 post-infection. (F) RNA copy/PFU ratios at 72 h post-transfection. (G) Virus yields posttransfection. The extracellular virions were determined by plaque assay. Each data represents the average and standard deviation from triplicates. The multiple t test was applied to 30 examine the statistical significance between K265E and WT at indicated time points. *p<0.05, significant; *p<0.01, very significant; ***p<0.001, extremely significant.

FIG. 2A-D contains comparisons of growth kinetics of NS1 K265E mutant and WT ZIKV strain FSS13025 on four 35 different cell lines. (A) C6/36 cells. (B) BHK-21 cells. (C) Vero cells. (D) Huh7 cells. Each data represents the average and standard deviation from two independent experiments performed in triplicates. The multiple t test was performed to analyze the statistical significance at each time point. 40 Only significant differences are shown.

FIG. 3A-F contains characterization of NS1 K265E in ZIKV strain PRVABC59. (A) Construction of the infectious clone of ZIKV strain PRVABC59. Six RT-PCR products (indicated as fragments A to G) were assembled to cover the 45 complete cDNA of ZIKV genome. A T7 promoter and a hepatitis delta virus ribozyme (HDVr) sequence were engineered at the 5' and 3' end of the viral cDNA, respectively. Restriction enzyme sites and their nucleotide positions in ZIKV genome are indicated. (B) Sequence comparison of 50 recombinant and parental ZIKV strain PRVABC59. (C) IFA of Vero cells transfected with in vitro transcribed WT or NS1 K265E mutant genome-length RNAs of ZIKV strain PRV-ABC59. (D) Plaque morphologies of recombinant WT or NS1 K265E ZIKV-PRV. Plaques were developed after 4 55 days of infection. (E) Virus yields from WT or NS1 K265E ZIKV-PRV RNA-transfected cells post-transfection. Virus titers were determined by plaque assay. (F) Growth kinetics of WT and NS1 K265E ZIKV-PRV on Vero cells. Cells were infected with WT and NS1 K265E mutant ZIKV-PRV (MOI 60 0.01). The multiple t test was performed to analyze the statistical significance at each time point.

FIG. **4**A-F shows effects of NS1 K265E mutation on ZIKV life cycle. (A) Replicon transient transfection assay. The top panel shows the schematic diagram of ZIKV 65 replicon with Renilla luciferase reporter. Luciferase signals of transfected cells were normalized to those of non-trans-

6

fected cells. Each data point represents the average and standard deviation from three independent experiments. (B) Flowchart of monitoring single cycle of ZIKV infection. After 1-hour infection, virus inoculums were removed and cells were washed three times with PBS. To quantify intracellular viral RNAs at 1, 14 and 20 h post-infection, cells were further stringently washed. Intracellular viral RNAs were measured by qRT-PCR and normalized using the cellular GAPDH RNA levels. Extracellular viral RNA were determined by qRT-PCR; and extracellular/intracellular infectivity were quantified by plaque assay. (C) Intracellular/ extracellular RNA and infectivity obtained from (B). Each data point represents the average and standard deviations of three independent experiments. The multiple t test was applied to analyze the statistical significances. (D) Flowchart of examining virus attachment and entry. At given time points, intracellular viral RNAs and GAPDH RNAs were quantified by qRT-PCR accordingly. (E) Intracellular viral RNAs quantified from (D). The relative viral RNA levels were calculated by normalizing the viral RNAs at each time point to that of 1 h post-infection (set at 100%). Each data point represents the averaged relative RNA of three independent experiments. The multiple t test was applied to analyze the statistical significances. (F) Carton of K265E mutation's effect on virus life cycle.

FIG. 5A-G illustrates co-immunoprecipitation assays (Co-IP). (A) Location of residue K265 in the 3D crystal structure of ZIKV NS1. (B) Flowchart of Co-IP experiments from ZIKV infected cells. Rabbit IgG anti-NS1 or control IgGs were used for pull down ZIKV NS1 and its associated complexes. (C) Co-IP results from (B). NS1 in both eluates and cell lysates were probed using rabbit anti-NS1 and protein A-HRP. E proteins were detected by mouse IgG anti-ZIKV and goat anti-mouse IgG-HRP. prM was examined by rabbit IgG anti-ZIKV prM and goat anti-rabbit IgG-HRP. (D) Densitometry analysis of Western blot results from (C). The band intensities of prM and E proteins in (C) were quantified and normalized to those of NS1 proteins from corresponding eluates. The efficiencies of prM and E pulled-down by WT NS1 were set as 100%. The averaged relative intensities from three independent experiments were shown. An unpaired Student t test was used to estimate the statistical significance. (E) Flowchart of Co-IP from HEK293T cells transiently expressing NS1 and NS2A-HA. Cell lysates was subjected to Co-IP using mouse IgG anti-HA or mouse control IgG. (F) Western blot results from (E). NS2A-HA in the eluates and cell lysates were examined by rabbit IgG anti-HA and goat anti-rabbit IgG-HRP respectively. NS1 proteins were detected by rabbit anti-ZIKV NS1 and goat anti-rabbit IgG-HRP. (G) Densitometry analysis of Western blot results from (F). The band intensities of NS1 proteins in (F) were quantified and normalized to those of NS2A-HA proteins from corresponding eluates. An unpaired Student t test was used to evaluate the statistical significance

FIG. 6A-B contains a comparison of virulence between recombinant WT and NS1 K265E ZIKV strain FSS13025 in A129 mice. (A) Viremia from day 1 to 4 post-infection. Viremia were quantified using plaque assay. Limitation of detection (L.O.D.) is 100 PFU/ml. Each data point represents the averaged viremia from four mice. (B) Weight loss. The averaged percentages of initial weight from eight mice are presented. The two-way ANOVA multiple comparison was used to evaluate the statistical significance.

FIG. 7A-C shows that PrM H83R, NS1 K265E and NS3 S356F mutations further increase viral yield. (A) Plaque morphologies. Viruses harvested on day 3 post-transfection

were assayed by plaque assay on Vero cells. Plaques were developed on day 4 post-infection. (B) Growth kinetics of ZIKV-PRV mutant viruses. Vero cells were infected with equal amounts of ZIKV-PRV mutant viruses (MOI 0.01). The multiple t test was performed to analyze the statistical significance at each time point. (C) Comparison of replication kinetics of the WT ZIKV PRVABC59 strain with its triple mutant. The fold differences in viral titers between the WT and triple mutant are indicated.

FIG. **8** shows a thermostability analysis of recombinant ¹⁰ WT and NS1 K265E mutant ZIKV strain FSS13025. Data indicate the means from three independent experiments. A one-way ANOVA test was performed to analyze the statistic differences between each treatment group and corresponding un-treated group. ¹⁵

FIG. 9A-C shows a stability analysis of 3'UTR deletion ZIKVs in cell culture. P0 viruses (derived from the culture fluids of RNA-transfected) were continuously cultured on Vero cells for five rounds (5 days for each round of culture), resulting in P5 viruses. The P5 viruses were subjected to the 20 following characterization. (A) Immunostaining focus assay. WT and P5 mutant viruses were analyzed using an immunostaining focus assay on Vero cells. For each mutant virus, three independent selections were performed on Vero cells. Representative images of infectious foci for each P5 mutant ²⁵ virus are presented. (B) Replication kinetics. Vero cells in 24-well plates (2*10⁵ cells per well) were infected with WT and P5 mutant viruses at an MOI of 0.01. Culture fluids were quantified for infectious viruses on days 1 to 5 using the immunostaining focus assay on Vero cells. (C) Adaptive 30 mutations in P5 mutant viruses. The complete genomes of P5 mutant viruses were sequenced for each of the three independent selections. The adaptive mutations are indicated by their amino acid positions of indicated genes based ZIKV FSS13025 strain (GenBank number KU955593.1).

DETAILED DESCRIPTION OF THE INVENTION

The present invention in general relates to the construc-⁴⁰ tion and characterization of variant Zika strains having advantageous properties and the use and manufacture thereof, especially in making immunogenic compositions for use in providing immunity against Zika. However, before further describing the invention in detail the following ⁴⁵ definitions are provided.

Definitions

An "adjuvant" refers to a substance that enhances an 50 immune response, e.g., an antibody or cell-mediated immune response against a specific agent, e.g., an antigen, or an infectious agent.

An "attenuated" or "live-attenuated" virus strain refers to a mutated, modified and/or recombinant virus having 55 reduced or no virulence or propensity to cause a disease or infection normally associated with the wildtype or unmodified, non-mutated virus.

Complementary DNA ("cDNA") is DNA that is complementary to a given RNA which serves as a template for 60 synthesis of the cDNA in a reaction that is catalyzed by reverse transcriptase. cDNA is synthesized from a single stranded RNA and may be artificially produced or naturally produced by retroviruses.

A viral "cDNA clone" is a double-stranded DNA copy of 65 all or a portion of a viral genome, in this case the ZIKV RNA genome. A cDNA clone is generally carried in a plasmid

vector. An "infectious cDNA clone" can be used for production of in vitro RNA transcripts with a polymerase such as the T7 RNA polymerase. An infectious cDNA clone (or the RNA transcript produced from the infectious cDNA clone) generates recombinant cDNA clone-derived virus when transfected into cells.

"Heterologous" means derived from a genetically distinct entity from the rest of the entity to which it is being compared. For example, a polynucleotide may be placed by genetic engineering techniques into a plasmid or vector derived from a different source, and is a heterologous polynucleotide. A promoter removed from its native coding sequence and operatively linked to a coding sequence other than the native sequence is a heterologous promoter. The polynucleotides of the invention may comprise additional sequences, such as additional encoding sequences within the same transcription unit, controlling elements such as promoters, ribosome binding sites, 5'UTR, 3'UTR, transcription terminators, polyadenylation sites, additional transcription units under control of the same or a different promoter. sequences that permit cloning, expression, homologous recombination, and transformation of a host cell, and any such construct as may be desirable to provide embodiments of this invention.

In general, "identity" or "sequence identity" refers to an exact nucleotide-to-nucleotide or amino acid-to-amino acid correspondence of two polynucleotides or polypeptide sequences, respectively. Percent identity can be determined by a direct comparison of the sequence information between two molecules (the reference sequence and a sequence with unknown % identity to the reference sequence) by aligning the sequences, introducing gaps if necessary to achieve the maximum percent identity, counting the exact number of matches between the two aligned sequences, dividing by the length of the reference sequence, and multiplying the result by 100. The determination of percent identity between any two sequences can be accomplished using a mathematical algorithm. Alignment for purposes of determining percent sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, BLAST-2, BLASTN, BLASTP, ALIGN, ALIGN-2 or Megalign (DNASTAR) software. Appropriate parameters for measuring alignment, including any algorithms needed to achieve maximal alignment over the full-length of the sequences being compared can be determined by known methods. Depending on the application, the "percent identity" can exist over a region of the sequence being compared, e.g., over the ORF of the variant ZIKV cDNA clone, RNA transcript, or strain, or, alternatively, exist over the full length of the two sequences to be compared. A skilled artisan would understand that for purposes of determining sequence identity when comparing a DNA to an RNA sequence, a thymidine nucleotide is equivalent to a uracil nucleotide.

An "immunogenic composition" herein refers to a composition containing an attenuated or inactivated ZIKV strain according to the invention which elicits an immune response in a susceptible host, e.g., an antibody, Th1 or cellular (e.g., T cell-mediated) immune response.

An "isolated" biological component (such as an isolated virus, bacterium or nucleic acid) refers to a component that has been substantially separated or purified away from its environment or other biological components in the cell of the organism in which the component naturally occurs, for instance, other chromosomal and extra-chromosomal DNA and RNA, proteins, and organelles. Nucleic acids and proteins that have been "isolated" include nucleic acids and proteins purified by standard purification methods. The term also embraces nucleic acids and proteins prepared by recombinant technology as well as chemical synthesis.

The term "nucleic acid" and "polynucleotide" refer to RNA or DNA that is linear or branched, single or double 5 stranded, or a hybrid thereof. The term also encompasses RNA/DNA hybrids. The following are non-limiting examples of polynucleotides: a gene or gene fragment, exons, introns, mRNA, tRNA, rRNA, ribozymes, cDNA, recombinant polynucleotides, branched polynucleotides, 10 plasmids, vectors, isolated DNA of any sequence, isolated RNA of any sequence, nucleic acid probes and primers. A polynucleotide may comprise modified nucleotides, such as methylated nucleotides and nucleotide analogs, uracyl, other sugars and linking groups such as fluororibose and thiolate, 15 and nucleotide branches. The sequence of nucleotides may be further modified after polymerization, such as by conjugation, with a labeling component. Other types of modifications included in this definition are caps, substitution of one or more of the naturally occurring nucleotides with an 20 analog, and introduction of means for attaching the polynucleotide to proteins, metal ions, labeling components, other polynucleotides or solid support. The polynucleotides can be obtained by chemical synthesis or derived from a microorganism. The term "gene" is used broadly to refer to 25 any segment of polynucleotide associated with a biological function. Thus, genes include introns and exons as in genomic sequence, or just the coding sequences as in cDNAs and/or the regulatory sequences required for their expression. For example, gene also refers to a nucleic acid 30 fragment that expresses mRNA or functional RNA, or encodes a specific protein, and which includes regulatory sequences.

A "pharmaceutically acceptable carrier" or "excipient" refers to compounds or materials conventionally used in 35 immunogenic or vaccine compositions during formulation and/or to permit storage.

"Prophylactically effective amount" of a ZIKV strain according to the invention refers to an amount sufficient to prevent or reduce the incidence of infection in a susceptible 40 host.

The term "recombinant" as used herein to describe a nucleic acid molecule means a polynucleotide of genomic, cDNA, viral, semisynthetic, or synthetic origin which does not occur in nature or by virtue of its origin or manipulation 45 is associated with or linked to another polynucleotide in an arrangement not found in nature. The term "recombinant" as used with respect to a protein or polypeptide means a polypeptide produced by expression of a recombinant polynucleotide. 50

A "susceptible host" herein refers to a host or animal that may be infected by ZIKV. Such hosts include humans or animals, e.g., a human, nonhuman primate, ape, monkey, horse, cow, carabao, goat, duck, bat, or other suitable non-human host.

"Therapeutically effective amount" of a ZIKV strain according to the invention refers to an amount sufficient to treat ZIKV infection or a disease associated therewith in a susceptible host.

A "vaccine" composition herein refers to a composition 60 containing a ZIKV strain according to the invention which elicits a therapeutic or prophylactic immune response against ZIKV.

The terms "variant" and "mutant" refer to biologically active derivatives of the reference molecule that retain or 65 enhance the desired activity, such as the ability to increase ZIKV replication and production as discussed herein. In the

present invention, a variant ZIKV cDNA clone or strain contains one or more naturally occurring or genetically engineered mutations that result in high-yield manufacture of ZIKV in cells, particularly monkey or human cell lines, such as Vero or Huh7 cells.

The terms "variant" and "mutant" in reference to a polynucleotide (e.g. the variant ZIKV cDNA clone, RNA transcript, strain, or ORF) or polypeptide (e.g., one of the three structural (capsid [C], precursor membrane [prM], and envelope [E]) or seven non-structural (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) proteins of the ZIKAV) refers to a polynucleotide or polypeptide that differs from the corresponding wildtype polynucleotide sequence and structure by one or more nucleic acid additions, substitutions and/or deletions, or differs from the corresponding wildtype polypeptide sequence and structure by one or more amino acid additions, substitutions and/or deletions, so long as the modifications do not destroy the desired biological activity (e.g. the ability to replicate). In general, the sequences of such variants and mutants of the invention will have a high degree of sequence identity to the reference or corresponding wildtype sequence, e.g., a nucleic acid or amino acid sequence identity of at least 40, 50, 60, 70, 80 or 85%, more particularly at least 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98 or 99%, when the two sequences are aligned. For example, the nucleic acid sequence of the open reading frame (ORF) of a ZIKV cDNA clone, RNA transcript, or strain that is a variant of the PRVABC59 strain will generally have at least 40, 50, 60, 70, 80 or 85%, more particularly at least 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98 or 99% sequence identity to the nucleic acid sequence of the ORF of PRVABC59.

Often, the "variant" or "mutant" polypeptide sequence will include the same number of amino acids as the wildtype polypeptide but will include particular substitutions, as explained herein.

It will be appreciated by those of ordinary skill in the art that, as a result of the degeneracy of the genetic code, there are many nucleotide sequences that encode a particular polypeptide of interest as described herein. Some of these polynucleotides bear minimal homology to the nucleotide sequence of any native gene. Nonetheless, "variant" or "mutant" polynucleotides that vary due to differences in codon usage are specifically contemplated by the present invention.

The "variant" or "mutant" polypeptide sequence can include amino acid substitutions that are conservative in nature, i.e., those substitutions that take place within a family of amino acids that are related in their side chains. Specifically, amino acids are generally divided into four families: (1) acidic-aspartate and glutamate; (2) basic-lysine, arginine, histidine; (3) non-polar-alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan; and (4) uncharged polar-glycine, asparagine, glutamine, 55 cysteine, serine, threonine, tyrosine. Phenylalanine, tryptophan, and tyrosine are sometimes classified as aromatic amino acids. For example, it is reasonably predictable that an isolated replacement of leucine with isoleucine or valine, an aspartate with a glutamate, a threonine with a serine, or a similar conservative replacement of an amino acid with a structurally related amino acid, will not have a major effect on the biological activity. Further one of skill in the art may readily determine regions of the molecule of interest that can tolerate change by reference to Hopp/Woods and Kyte-Doolittle plots, well known in the art.

"ZIKV infection" or "infection elicted by ZIKV" herein refers to the infection of a susceptible host with ZIKV and diseases associated therewith, including congenital ZIKV syndrome and Guillan-Barrê syndrome (GB S).

As has been mentioned above the present invention provides novel Zika variant strains for potential use in making Zika vaccines. In general the invention relates to the 5 construction and characterization of a DNA copy of the Zika virus (ZIKV) genome (a cDNA clone) or a ZIKV strain encoding ZIKA proteins having specific mutations or combinations thereof, e.g., mutations in the NS1, NS3, prM and/or E proteins. These variant ZIKV cDNA clones, RNA transcripts of the cDNA clones, or variant ZIKV strains encoding the mutations, may possess increased ZIKV replication in cells, and thus can be used to produce higher yields of ZIKV, with shortened manufacture time, and minimized chance of contamination as compared to methods 15 using existing ZIKV cDNA clones, RNA transcripts and strains that do not include these mutations. The ZIKV produced using the subject variant cDNA clones, RNA transcripts or strains may be used to produce ZIKV vaccines, in particular inactivated ZIKV vaccines, for treating diseases 20 related to ZIKV or providing immunoprotection against infections elicited by ZIKV, including congenital ZIKV syndrome, microcephaly, and Guillan-Barrê syndrome (GBS). The vaccine may also prevent viremia in pregnant women and travelers to epidemic/endemic regions, avert 25 congenital ZIKV syndrome and/or may also be useful to suppress epidemic transmission.

The variant ZIKV cDNA clones, RNA transcripts or strains of the invention contain one or more mutations in the ZIKV open reading frame (ORF). These mutations in par- 30 ticular may include the following amino acid substitutions: NS1 K265E, prM H83R, NS3 S356F, E R283W, E H219L, E L441L, E K443N, E T315I, E H401Y, E A501T, NS1 R103K, and NS1 W98L. In some preferred embodiments a variant ZIKV cDNA clone, RNA transcript thereof, or ZIKV 35 strain according to the invention encodes ZIKV proteins comprising an NS1 K265E substitution; NS1 K265E, prM H83R and NS3 S356F substitutions; NS1 K265E and prM H83R substitutions; or NS1 K265E and NS3 S356F substitutions. It has been observed that the NS1 K265E mutation 40 enhances the replication and viral yield of ZIKV in cells, but does not affect ZIKV virulence. In addition, both the prM H83R and the NS3 S356F mutations have been found to further increase viral yield, with the triple mutant (NS1 K265E, prM H83R and NS3 S356F) producing a peak viral 45 titer.

The variant ZIKV cDNA clones, RNA transcripts and strains of the invention may comprise cDNA or RNA corresponding to the complete (full-length) or less than the complete ZIKV genomic RNA, such as one or several 50 fragments of the ZIKV genome. In addition they may be derived from different Zika strains other than those embodied herein, e.g., using Zika strains which are known and available in the art, i.e., by introducing the afore-mentioned substitution mutations or corresponding mutations in the 55 ORF of these or other Zika strains. Generally, the ZIKV cDNA clones, RNA transcripts and strains will comprise sequences encoding all or substantially all the proteins of a ZIKV or will comprise the entire open reading frame (ORF) of a ZIKV genome (modified to include any or all of the 60 afore-mentioned substitution mutations). In some embodiments, the sequences will have at least 40, 50, 60, 70, 80 or 85%, more particularly at least 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98 or 99%, sequence identity to a wildtype sequence of ZIKV. In a preferred embodiment, a cDNA 65 clone, RNA transcript or strain containing any combination of the afore-identified substitution mutations can be trans-

fected into cells or used to infect cells to produce Zika virus containing any combination of the afore-identified substitution mutations. In certain embodiments the produced virus may be an infectious, attenuated, replication defective or inactivated virus containing any combination of the aforeidentified substitution mutations.

The variant ZIKV cDNA clones, RNA transcripts and strains of the invention may be derived from any ZIKV and thus may be variants of any strain of ZIKV. For example, the source of the variant ZIKV cDNA clone or strain can be any one of the following strains: MR766-NIID, P6-740, ArD7117, IbH_30656, ArB1362, ARB13565, ARB7701, ARB15076, ArD_41519, ArD128000, ArD158084, ArD157995, FSM, FSS13025, PHL/2012/CPC-0740-Asian, Haiti/1225/2014, H/PF/2013, PLCal ZV, SV0127_14_Asian, Natal_RGN_Asian, ZikaSPH2015, Brazil_ZKV2015_Asian, BeH815744, BeH819015, BeH819966, BeH823339, BeH828305. 103344, SSABR1-Asian, FLR, 8375 PRVABC59, Z1106033, MRS_OPY_Martinique, VE_Ganxian_Asian, GD01_Asian, GDZ16001, ZJO3, Rio-U1 or Rio-S1 ZIKV strains (see Wang L, et al. Cell Host Microbe. 2016 May 11; 19(5):561-5). In certain embodiments, the strain is a North American strain or a South American strain. Preferred ZIKV strains used to produce Zika variant according to the invention are PRVABC59 or FSS13025.

In some embodiments, the variant ZIKV cDNA clone is contained in a plasmid, which optionally comprises a promoter and/or a ribozyme sequence. For example the promoter may comprise a viral promoter or a mammalian promoter. The promoter can be at the 5' end of the cDNA clone, and is optionally a T7 promoter or a cytomegalovirus (CMV) promoter. The ribozyme sequence can be at the 3' end of the cDNA clone, and is optionally a hepatitis delta virus ribozyme (HDVr) sequence. In some embodiments, the plasmid is an expression vector, optionally a mammalian expression vector.

The ZIKV cDNA clones and strains of the present invention, and plasmids or vectors encoding the same, may be further modified, engineered, optimized, or appended in order to provide or select for further increased yield and/or other various features. In particular, other mutations (e.g. missense, additions, substitutions, deletions, or combinations thereof) may be introduced into the cDNA clones or strains in any one or more of the genes encoding the C, prM, E, NS1, NS2A, NS2B, NS3, NS4A, NS4B, or NS5 proteins. For example, a missense mutation may be introduced which results in a cold-sensitive mutation or a heat-sensitive mutation. In some embodiments, major phosphorylation sites of viral protein(s) may be removed.

In addition to mutations within the genes of the ORF, the intergenic region of the cDNA clone or strain may be altered. In one embodiment, the length of the intergenic region is altered. In another embodiment, the intergenic regions may be shuffled from the 5' to the 3' end of the cDNA clone or genome. In other embodiments, the genome position of a gene or genes of the cDNA clone or strain can be changed.

The variant ZIKV cDNA clone, RNA transcript or strain of the present invention may further comprise a sequence encoding one or several heterologous genes or other nongene sequences that are not derived from the ZIKV which was used as a source for the variant ZIKV cDNA clone or strain. Any heterologous gene of interest can be inserted into the nucleic acids of the present invention. In certain embodiments the heterologous genes encode peptides or proteins which are recognized as an antigen from an infectious agent by the immune system of a mammal. The heterologous gene may thus encode at least one antigen suitable for inducing an immune response against an infectious agent, at least one molecule interfering with the replication of an infectious agent or an antibody providing protection against an infectious agent. Alternatively or additionally, the heterologous gene may encode an immune modulator, a cytokine, an immunoenhancer or an anti-inflammatory compound. The cDNA clones and strains may also contain other mutations including, but not limited to, replacing a ZIKV gene with the analogous gene of a virus of a different species, of a different subgroup, or of a different variant.

In certain embodiments, the variant ZIKV cDNA clone, RNA transcript or strain of the invention comprises additional mutations that result in an attenuated virus strain which is modified so that it has reduced or no virulence or propensity to cause any disease or infection normally associated with the wildtype or unmodified ZIKV. The cDNA clone or attenuated strain may in addition comprise deletions within the 3'UTR.

The enhanced replication phenotypes of a variant ZIKV cDNA clone or strain of the invention can be tested by any method known to the artisan. For example, cells can be transfected with a candidate variant ZIKV cDNA clone or RNA transcript thereof, or infected with the variant ZIKV 25 strains. The replication rate of the ZIKV in cells can be determined by plotting the viral titer over the time post transfection or infection. The viral titer can be measured by any technique known to the skilled artisan. In certain embodiments, the yield of ZIKV production on cells can be 30 measured using a one-step plaque-purification method. In certain embodiments, different cell lines can be used to evaluate the enhanced replication phenotype of the cDNA clone or strain. For example, the achievable virus titers may be different in different cell lines. 35

In a specific embodiment, the viral titre is determined by obtaining a sample from transfected or infected cells or an infected subject, preparing a serial dilution of the sample and infecting a monolayer of cells that are susceptible to infection with the virus at a dilution of the virus that allows for 40 the emergence of single plaques. The plaques can then be counted and the viral titre expressed as plaque forming units per milliliter of sample. In another embodiment, the growth rate of a variant ZIKV strain of the invention in a subject can be estimated by the titer of antibodies against the virus in the 45 subject. Without being bound by theory, the antibody titer in the subject reflects not only the viral titer in the subject but also the antigenicity. If the antigenicity of the virus is constant, the increase of the antibody titer in the subject can be used to determine the growth curve of the virus in the 50 subject. In a preferred embodiment, the growth rate of the virus in animals or humans is tested by sampling biological fluids of a host at multiple time points post-infection and measuring viral titer.

The expression of ZIKV proteins from the variant ZIKV 55 cDNA clone, RNA transcript thereof, or variant ZIKV strain in a cell culture system or in a subject can be determined by any technique known to the skilled artisan. In certain embodiments, expression is measured by quantifying the level of the transcript. The level of the transcript can be 60 measured by Northern blot analysis or by RT-PCR using probes or primers, respectively that are specific for the transcript. The transcript can be distinguished from the genome of the virus because the virus is in the antisense orientation whereas the transcript is in the sense orientation. 65 In certain embodiments, the expression of the gene is measured by quantifying the level of the protein product of

the gene. The level of the protein can be measured by Western blot analysis using antibodies that are specific to the protein.

Additionally, the present invention provides methods of preparing a recombinant ZIKV, such as a viral RNA or a virion, using a variant ZIKV cDNA clone, RNA transcript of the cDNA, or strain of the invention by any method known to the artisan. For example, cells can be transfected with the cDNA clone or RNA transcript thereof, or infected with the strain, then grown in culture and monitored for viral protein expression, RNA synthesis, and virus production. Suitable host cells include any eukaryotic cells that support viral replication, for example monkey (e.g. Vero) or human (e.g. Huh7) cell lines as discussed herein. In some embodiments the cDNA can be expressed in a host cell and the ZIKV isolated from that host cell. Any of methods for isolating viruses from cell culture known in the art may be used. Alternatively, the nucleic acids of the present invention can be transcribed and/or translated using chemicals, biological 20 reagents and/or cell extracts and the recombinant ZIKV subsequently isolated.

The recombinant virus produced from the variant ZIKV cDNA clone, RNA transcript of the cDNA, or strain of the invention can be attenuated, or can be inactivated by any known method, including with chemicals, heat or radiation. For example, common techniques known to one of skill in the art use formalin, beta-propiolactone, heat, and/or detergent for inactivation. An inactivated vaccine has a low residual infectivity following inactivation, e.g. <1 PFU/mL. The PFU's of a particular vaccine may be determined, for example, by using a plaque assay, an immunostaining assay, or other method known in the art for detecting viral infectivity. The virus can purified by any method known, including concentration by ultrafiltration followed by purification by zonal centrifugation or by chromatography, and may be purified before or after inactivation.

Inactivated vaccine types that can be used in the invention include whole-virus vaccines or subvirion (split) vaccines. The whole-virus vaccine contains intact, inactivated virus, while the subvirion vaccine contains purified virus disrupted with detergents that solubilize the lipid-containing viral envelope, followed by chemical inactivation of residual virus. Various assays, f or example sucrose gradients and neutralization assays, can be used to test the safety of a viral vaccine.

Inactivated or attenuated virus produced according to the invention can be used to confer prophylactic or therapeutic protection in susceptible hosts against ZIKV infection, e.g., to treat or prevent ZIKV infection and/or to prevent congenital ZIKV syndrome or GBS. The ZIKV vaccine produced according to the invention may be formulated using known techniques for formulating viral vaccines or immunogenic compositions of viral vaccines.

Administration

The immunogenic compositions of the present invention may be administered in a number of ways depending upon whether local or systemic treatment is desired.

For example, administration may be topical, parenteral, or enteral.

The pharmaceutical compositions of the invention are typically suitable for parenteral administration. As used herein, "parenteral administration" of a pharmaceutical composition includes any route of administration characterized by physical breaching of a tissue of a subject and administration of the pharmaceutical composition through the breach in the tissue, thus generally resulting in the direct administration into the blood stream, into muscle, or into an internal organ. Parenteral administration thus includes, but is not limited to, administration of a pharmaceutical composition by injection of the composition, by application of the composition through a surgical incision, by application of the composition through a tissue-penetrating non-surgical wound, and the like. In particular, parenteral administration is contemplated to include, but is not limited to, subcutaneous, intraperitoneal, intranuscular, intrasternal, intravenous, intraarterial, intrathecal, intraventricular, intraurethral, intracranial, intrasynovial injection or infusions; and kidney dialytic infusion techniques.

Formulations of a pharmaceutical composition suitable for parenteral administration typically generally comprise the active ingredient combined with a pharmaceutically acceptable carrier, such as sterile water or sterile isotonic saline. Such formulations may be prepared, packaged, or sold in a form suitable for bolus administration or for 20 continuous administration. Injectable formulations may be prepared, packaged, or sold in unit dosage form, such as in ampoules or in multi-dose containers containing a preservative. Formulations for parenteral administration include, but are not limited to, suspensions, solutions, emulsions in 25 oily or aqueous vehicles, pastes, and the like. Such formulations may further comprise one or more additional ingredients including, but not limited to, suspending, stabilizing, or dispersing agents. In one embodiment of a formulation for parenteral administration, the active ingredient is provided 30 in dry (i.e. powder or granular) form for reconstitution with a suitable vehicle (e.g. sterile pyrogen-free water) prior to parenteral administration of the reconstituted composition. Parenteral formulations also include aqueous solutions which may contain excipients such as salts, carbohydrates 35 and buffering agents (preferably to a pH of from 3 to 9), but, for some applications, they may be more suitably formulated as a sterile non-aqueous solution or as a dried form to be used in conjunction with a suitable vehicle such as sterile, pyrogen-free water. Exemplary parenteral administration 40 forms include solutions or suspensions in sterile aqueous solutions, for example, aqueous propylene glycol or dextrose solutions. Such dosage forms can be suitably buffered, if desired. Other parentally-administrable formulations which are useful include those which comprise the active 45 ingredient in microcrystalline form, or in a liposomal preparation. Formulations for parenteral administration may be formulated to be immediate and/or modified release. Modified release formulations include delayed-, sustained-, pulsed-, controlled-, targeted and programmed release. 50

The terms "oral", "enteral", "enterally", "orally", "nonparenteral", "non-parenterally", and the like, refer to administration of a compound or composition to an individual by a route or mode along the alimentary canal. Examples of "oral" routes of administration of a vaccine composition 55 include, without limitation, swallowing liquid or solid forms of a vaccine composition from the mouth, administration of a vaccine composition through a nasojejunal or gastrostomy tube, intraduodenal administration of a vaccine composition, and rectal administration, e.g., using suppositories for the 60 lower intestinal tract of the alimentary canal.

Preferably, the formulated virus-containing composition is suitable for intranasal, injection, topical or oral administration, for example as a dried stabilized powder for reconstitution in a suitable buffer prior to administration or in an 65 aerosol composition. In a preferred embodiment, the composition is intranasally administered.

Pharmaceutical compositions and formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids, semisolids, monophasic compositions, multiphasic compositions (e.g., oil-in-water, water-in-oil), foams microsponges, liposomes, nanoemulsions, aerosol foams, polymers, fullerenes, and powders (see, e.g., Reference 35, Taglietti et al. (2008) Skin Ther. Lett. 13:6-8). Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable.

Compositions and formulations for oral administration include powders or granules, suspensions or solutions in water or non-aqueous media, capsules, sachets or tablets. Thickeners, flavoring agents, diluents, emulsifiers, dispersing aids or binders may be desirable.

Compositions and formulations for parenteral, intrathecal, or intraventricular administration may include sterile aqueous solutions that may also contain buffers, diluents and other suitable additives such as, but not limited to, penetration enhancers, carder compounds and other pharmaceutically acceptable carriers or excipients.

Pharmaceutical compositions of the present invention include, but are not limited to, solutions, emulsions, and liposome-containing formulations. These compositions may be generated from a variety of components that include, but are not limited to, preformed liquids, self-emulsifying solids and self-emulsifying semisolids.

The pharmaceutical formulations of the present invention, which may conveniently be presented in unit dosage form, may be prepared according to conventional techniques well known in the pharmaceutical industry. Such techniques include the step of bringing into association the active ingredients with the pharmaceutical carrier(s) or excipient(s). In general the formulations are prepared by uniformly and intimately bringing into association the active ingredients with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.

The compositions of the present invention may be formulated into any of many possible dosage forms such as, but not limited to, tablets, capsules, liquid syrups, soft gels, suppositories, aerosols, and enemas. The compositions of the present invention may also be formulated as suspensions in aqueous, non-aqueous or mixed media. Aqueous suspensions may further contain substances that increase the viscosity of the suspension including, for example, sodium carboxymethylcellulose, sorbitol and/or dextran. The suspension may also contain stabilizers.

In one embodiment of the present invention the pharmaceutical compositions may be formulated and used as foams. Pharmaceutical foams include formulations such as, but not limited to, emulsions, microemulsions, creams, jellies and liposomes. While basically similar in nature these formulations vary in the components and the consistency of the final product. Agents that enhance uptake of oligonucleotides at the cellular level may also be added to the pharmaceutical and other compositions of the present invention. For example, cationic lipids, such as lipofectin, cationic glycerol derivatives, and polycationic molecules, such as polylysine, also enhance the cellular uptake of oligonucleotides.

The compositions of the present invention may additionally contain other adjunct components conventionally found in pharmaceutical compositions. Thus, for example, the compositions may contain additional, compatible, pharmaceutically-active materials such as, for example, antipruritics, astringents, local anesthetics or anti-inflammatory agents, or may contain additional materials useful in physically formulating various dosage forms of the compositions of the present invention, such as dyes, flavoring agents, preservatives, antioxidants, opacifiers, thickening agents and stabilizers. However, such materials, when added, should not unduly interfere with the biological activities of the components of the compositions of the present inven- 5 tion. The formulations can be sterilized and, if desired, mixed with auxiliary agents, e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, colorings, flavorings and/or aromatic substances and the like which do not deleteriously 10 interact with the nucleic acid(s) of the formulation.

The compositions of the present invention may include excipients known in the art. Examples of excipients used for vaccine formulation such as adjuvants, stabilizers, preservatives, and trace products derived from vaccine manufac- 15 turing processes include but are not limited to: Aluminum Hydroxide, Amino Acids, Benzethonium Chloride, Formaldehyde or Formalin, Inorganic Salts and Sugars, Vitamins, Asparagine, Citric Acid, Lactose, Glycerin, Iron Ammonium Citrate, Magnesium Sulfate, Potassium Phosphate, Alumi- 20 num Phosphate, Ammonium Sulfate, Casamino Acid, Dimethyl-betacyclodextrin, 2-Phenoxyethanol, Bovine Extract, Polysorbate 80, Aluminum Potassium Sulfate, Gelatin, Sodium Phosphate, Thimerosal, Sucrose, Bovine Protein, Lactalbumin Hydrolysate, Formaldehyde or Formalin, Mon- 25 key Kidney Tissue, Neomycin, Polymyxin B, Yeast Protein, Aluminum Hydroxyphosphate Sulfate, Dextrose, Mineral Salts, Sodium Borate, Soy Peptone, MRC-5 Cellular Protein, Neomycin Sulfate, Phosphate Buffers, Polysorbate, Bovine Albumin or Serum, DNA, Potassium Aluminum 30 Sulfate, Amorphous Aluminum Hydroxyphosphate Sulfate, Carbohydrates, L-histidine, Beta-Propiolactone, Calcium Chloride, Neomycin, Ovalbumin, Potassium Chloride, Potassium Phosphate, Sodium Phosphate, Sodium Taurodeoxychoalate, Egg Protein, Gentamicin, Hydrocortisone, 35 Octoxynol-10, a-Tocopheryl Hydrogen Succinate, Sodium Deoxycholate, Sodium Phosphate, Beta-Propiolactone, Polyoxyethylene 910, Nonyl Phenol (Triton N-101, Octoxynol 9), Octoxinol-9 (Triton X-100), Chick Kidney Cells, Egg Protein, Gentamicin Sulfate, Monosodium Glutamate, 40 Sucrose Phosphate Glutamate Buffer Calf Serum Protein, Streptomycin, Mouse Serum Protein, Chick Embryo Fibroblasts, Human Albumin, Sorbitol, Sodium Phosphate Dibasic, Sodium Bicarbonate, Sorbitol, Sucrose, Potassium Phosphate Monobasic, Potassium Chloride, Potassium 45 Phosphate Dibasic, Phenol, Phenol Red (Phenol sulfonphthalein), Amphotericin B, Chicken Protein, Chlortetracycline, Ethylenediamine-Tetraacetic Acid Sodium (EDTA), Potassium Glutamate, Cell Culture Media, Sodium Citrate, Sodium Phosphate Monobasic Monohydrate, Sodium 50 Hydroxide, Calcium Carbonate, D-glucose, Dextran, Ferric (III) Nitrate, L-cystine, L-tyrosine, Magnesium Sulfate, Sodium Hydrogenocarbonate, Sodium Pyruvate, Xanthan, Peptone, Disodium Phosphate, Monosodium Phosphate, Polydimethylsilozone, Hexadecyltrimethylammonium Bro- 55 mide Ascorbic Acid, Casein, Galactose, Magnesium Stearate, Mannitol, Hydrolyzed Porcine Gelatin, Freund's emulsified oil adjuvants (complete and incomplete), Arlacel A, Mineral oil, Emulsified peanut oil adjuvant (adjuvant 65), Corynebacterium granulosum-derived P40 component, 60 Lipopolysaccharide, Mycobacterium and its components, Cholera toxin, Liposomes, Immunostimulating complexes (ISCOMs), Squalene, and Sodium Chloride.

The vaccine or immunogenic composition may be used in the vaccination of a mammalian host, particularly a human, 65 nonhuman primate, ape, monkey, horse, cow, carabao, goat, duck, bat, or other suitable non-human host. In some

instances the subject may be immunocompromised or may have another condition, e.g., may be pregnant.

The following examples are offered to illustrate, but not to limit, the claimed invention.

Examples

Materials and Methods

Cell Culture and Antibodies.

BHK-21 and Vero cells were purchased from the American Type Culture Collection (ATCC, Bethesda, Md.), and maintained in a high-glucose Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal bovine serum (FBS) (HyClone Laboratories, South Logan, Utah) and 1% penicillin/streptomycin at 37° C. with 5% CO2. A. albopictus C6/36 cells were grown in RPMI1640 containing 10% FBS and 1% penicillin/streptomycin at 30° C. with 5% CO2. Huh7 cells were maintained in a high-glucose Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 1% penicillin-streptomycin and 1% Non-Essential Amino Acids (NEAA) at 37° C. with 5% CO2. HEK293T cells were grown in highglucose DMEM containing 10% FBS and 1% penicillin/ streptomycin. All culture medium, NEAA and antibiotics were purchased from ThermoFisher Scientific (Waltham, Mass.).

The following antibodies were used: a mouse monoclonal antibody (mAb) 4G2 cross-reactive with flavivirus E protein (ATCC); goat anti-mouse IgG conjugated with Alexa Fluor®488 (Thermo Fisher Scientific, Waltham, Mass.); goat anti-mouse or anti-rabbit IgGs conjugated with horseradish peroxidase (IgG-HRP), protein A conjugated with HRP (A-HRP; Sigma, St. Louis, Mo.); rabbit or mouse control IgGs (ThermoFisher Scientific); rabbit IgG against ZIKV NS1, mouse IgG anti-ZIKV E, rabbit IgG anti-ZIKV prM (Alpha Diagnostic Intl. Inc., San Antonio, Tex.); mouse anti-HA (Abcam, Cambridge, United Kingdom); and rabbit anti-HA (Sigma).

Plasmid Construction.

The NS1 K265E mutation was introduced into the ZIKV infectious clone pFLZIKV containing the cDNA sequence of Cambodian strain (FSS13025) (Shan et al., 2016b) through an overlap PCR approach. Briefly, a cDNA fragment flanked between restriction sites AvrII (positions 1532-1537 in ZIKV genome) and SphI (positions 3856-3861 in ZIKV genome) was amplified by overlap PCR. The A3282G (NS1 K265E) mutation was introduced into the overlap primers during primer synthesis. The overlap PCR product containing the A3282G mutation was digested with AvrII and SphI restriction enzymes and cloned into the pFLZIKV.

Prior to construction of the infectious clone of ZIKV strain PRVABC59 (ZIKV-PRV), the parental viruses were propagated on Vero cells for two passages and subjected to whole-genome sequencing. Specifically, viral RNA was extracted using QIAamp Viral RNA Kits (Qiagen, Hilden, Germany). cDNA fragments covering the complete genome were synthesized from genomic RNA using the Super-Script® III One-Step RT-PCR System with Platinum® Taq DNA Polymerase (Invitrogen) according to the manufacturer's instructions. Similar strategy as previously reported for making ZIKV FSS13025 infectious clone (Shan et al., 2016b) was used to construct the infectious clone of ZIKV-PRV. FIG. 3A depicts the scheme to clone and assemble the full genome of ZIKV-PRV. The genomic cDNA was assembled using a single-copy vector pCC1BAC (Epicentre, Madison, Wis.). E. coli strain TransforMax[™] EPI300[™] (Epicentre) was used to propagate the plasmids. The virus-

specific sequence of each intermediate clone was validated by Sanger DNA sequencing before it was used in subsequent steps. The final plasmid containing full-length cDNA (pFL-ZIKV-PRV) was sequenced to ensure no undesired mutations. A T7 promoter and a hepatitis delta virus ribozyme (HDVr) sequence were engineered at the 5' and 3' ends of the complete viral cDNA for in vitro transcription and for generation of the authentic 3' end of the RNA transcript, respectively. All restriction endonucleases were purchased from New England Biolabs (Beverly, Mass.).

A mammalian expression vector, pXJ (Xie et al., 2013), driven by a cytomegalovirus (CMV) promoter was used to express the polyprotein E24-NS1-NS2A-HA of ZIKV strain FSS13025. The C-terminal 24 amino acids of the E protein were retained to ensure the correct targeting and processing of NS1 in the ER membrane. The gene cassette encoding E24-NS1-NS2A was amplified from pFLZIKV (Shan et al., 2016b) by PCR using primer pair P1 (5'-GATGCGGCCG-CACCATGAATGGATCTATTTCCCTTATGTGCTTG-3' SEQ ID NO: 1) and reverse primer P2 (5'-TAATCTG-GAACATCGTATGGGTAGGATCCCCGCTTCCCACTC-CTTGTGAGCA-3' SEQ ID NO: 2). The human influenza hemagglutinin (HA) tag (GSYPYDVPDYA SEQ ID NO: 3) sequence was in-frame fused to the C-terminus of NS2A 25 through a second PCR using primer P1 and P3 (5'-GAC-CTCGAGCTAAGCGTAATCTGGAACATCGTATGGG-TAGGATCC-3' SEQ ID NO: 4). The purified PCR fragment was cloned into pXJ vector through restriction enzymes NotI and XhoI. All plasmids were validated by restriction enzyme 30 digestion and DNA sequencing from GENEWIZ (South Plainfield, N.J.). Other primer sequences and the complete pFLZIKV-PRV sequence are available upon request.

RNA In Vitro Transcription, Electroporation and Immunofluorescence Assay.

Plasmid linearization, RNA in vitro transcription and Vero cell electroporation were performed according to previously described protocols (Shan et al., 2016b). After electroporation, cells were seeded in a T-175 flask for virus production or 8-well chamber slide for monitoring E protein expression 40 by immunofluorescence assay (IFA). IFA was performed as described previously (Shan et al., 2016b). Antibody 4G2 and goat anti-mouse IgG conjugated with Alexa Fluor®488 were used as primary and secondary antibodies, respectively. Finally, the cells were mounted in a mounting medium with 45 DAPI (4',6-diamidino-2-phenylindole; Vector Laboratories, Inc., Burlingame, Calif.). Fluorescence images were acquired by a fluorescence microscope equipped with a video documentation system (Olympus, Shinjuku, Tokyo, Japan). 50

Virus Replication Kinetics and Plaque Assay.

C6/36 cells $(1.2 \times 10^6 \text{ cells/well})$, BHK-21 cells $(8 \times 10^5 \text{ cells})$ cells/well), Vero cells $(8 \times 10^5$ cells/well) or Huh7 cells $(8 \times 10^5 \text{ cells/well})$ were seeded into a 6-well plate one day prior to infection. At 16-20 h post-seeding, cells were 55 infected with WT or mutant ZIKV at an MOI 0.01. Infection was performed in triplicate at 30° C. (C6/36 cells) or 37° C. (BHK-21, Vero and Huh7 cells). After 1 h incubation, virus inoculum were removed and cells were washed extensively by PBS to eliminate unabsorbed viruses. Afterwards, 3 ml 60 fresh medium was added to each well. From day 1 to 6 post-infection, supernatants were collected daily and clarified by centrifugation at 500 g for 5 min prior to storage at -80° C. Virus in the culture fluids were determined by standard cytopathogenic effect-based plaque assay on Vero 65 cells (Shan et al., 2016b). Plaques formed on Vero monolayers were stained by crystal violet after 4 days of infection.

Replicon Transfection Assay.

This assay was performed as described previously (Xie et al., 2016). WT or NS1 K265E (10 μ g) ZIKV FSS13025 replicon RNAs were electroporated into Vero cells. At given time points, cells were washed twice with PBS and lysed in 100 μ l 1× Renilla luciferase lysis buffer (Promega, Madison, Wis.). Luciferase signals were immediately measured by Cytation 5 (Biotek, Winooski, Vt.) according to the manufacturer's instructions.

Plaque Purification.

Vero cells $(8 \times 10^5$ per well) were seeded into a 6-well plate. At 18-24 hour post-seeding, 200 µl serial dilutions of ZIKV (10^2 to 10^5 PFU/ml) were inoculated onto the monolayer for infection at 37° C. for 1 hour. Afterwards, virus inoculants were replaced with 3 ml of the first overlay (DMEM supplemented with 3.7 g/L NaHCO3, 2% FBS [v/v], 1% penicillin/streptomycin [v/v] and 1% Lonza Sea-Plaque[™] agarose [w/v]). Plates were incubated at 37° C. with 5% CO2. After four days of incubation, 3 ml of the 20 second overlay (first overlay supplemented with 1/50 0.33% neutral red solution [Sigma]) was added to the top of the first layer. Plates were incubated at 37° C. with 5% CO2 for another two days. Sequentially, individual plaques were harvested and transferred into a 24-well plate pre-seeded with 2×10^5 Vero cells. After 2-3 days of incubation, cytopathic effects occurred in 24-well plates. Immediately, supernatants were harvested, clarified by centrifugation at 500 g for 5 min and stored at -80° C. The titers and plaque morphologies of all isolates were determined by plaque assay (Shan et al., 2016b). The cDNA sequence of the viral genomes from three large and three small plaque isolates were determined by Sanger sequencing.

Quantitative Reverse Transcription PCR (qRT-PCR).

Viral RNAs in culture fluids were extracted using 35 QlAamp viral RNA minikit (Qiagen), and intracellular total RNAs were isolated using an RNeasy minikit (Qiagen). Extracted RNAs were eluted in 50 μl RNase-free water. One probe (5'-FAM/AGCCTACCT/ZEN/ specific TGACAAGCAATCAGACACTCAA/3IABkFQ-3' SEQ ID NO: 5) and a primer set (ZIKV 1193F: 5'-CCGCTGC-CCAACACAAG-3' SEQ ID NO: 6; ZIKV 1269R: 5'-CCACTAACGTTCTTTTGCAGACAT-3' SEQ ID NO: 7) were used to determine the ZIKV RNA copies. The probe contains a 5'-FAM reporter dye, 3' IBFQ quencher, and internal ZEN quencher. qRT-PCR assays were performed on the LightCycler® 480 System (Roche) following the manufacturer's protocol by using 15-0 reactions of the QuantiTect Probe RT-PCR Kit (QIAGEN) and 1.50 RNA templates. In vitro transcribed full-length ZIKV RNAs were used as RNA standard for RT-PCR quantification. The mRNA level of the housekeeping gene glyceraldehyde-3-phophate dehydrogenase (GAPDH) was measured using an iScript one-Step RT-PCR kit with SYBR green (Bio-Rad) and a primer pair M GAPDH-F (5'-AGGTCGGTGTGAACGGATTTG-3' SEQ ID NO: 8) and M GAPDH-R (5'-TGTAGACCATG-TAGTTGAGGTCA-3' SEQ ID NO: 9).

Quantification of Extra- and Intracellular Infectious Virions.

At selected time points, about 1 ml of culture fluids were harvested and centrifuged at 500 g for 5 min to remove cell debris prior to storage at -80° C. Infected cells were washed three times with cold PBS to remove unbound virions. As indicated in FIG. 4, a stringent wash in cold alkaline-highsalt solution (1 M NaCl and 50 mM sodium bicarbonate, pH 9.5) for 3 mins was applied to remove cell surface-associated virus. After twice cold-PBS washes, the cells were detached using 0.25% Trypsin-EDTA (ThermoFisher Scientific) and suspended in 3 ml DMEM medium containing 2% FBS. Total cells were collected by centrifugation at 1,000 g for 5 min. The cell pellets were resuspended in 250 μ l DMEM medium with 2% FBS. One hundred microliters of the cell suspensions was centrifuged at 1,000 g for 5 min to 5 pellet the cells; the pelleted cells were then used for intracellular viral RNA. The remaining 150 μ l of cell suspensions was lysed using a single freeze-thaw cycle (frozen at -80° C. and thawed at 37° C.). Afterwards, cellular debris was removed by centrifugation at 3,200 g for 5 min at 4° C., and 10 the supernatant was harvested for plaque assay to determine the intracellular infectivity.

Co-Immunoprecipitation (Co-IP).

Co-IPs were performed according to a previous described protocol (Zou et al., 2014) with some modifications. For 15 infection samples, 3×10⁶ Vero cells in 6-cm dishes were infected with recombinant WT or NS1 K265E ZIKV strain FSS13025 at MOI 1.0. At 32 h p.t., cells were washed three times with PBS and lysed in 1 ml Pierce[™] IP lysis buffer at 4° C. for 30 min. For transfection samples, 3×10⁶ HEK293T 20 cells in 6-cm dishes were transfected with 5 µg of plasmids encoding WT or NS1 K265E mutated polyprotein E24-NS1-NS2A-HA using X-tremeGENE 9 DNA transfection reagent (Roche) according to the manufacturer's instructions. At 42 h p.t., cells were washed twice with cold PBS an lysed in 1 25 ml immunoprecipitation (IP) buffer (20 mM Tris, pH 7.5, 100 mM NaCl, 0.5% DDM, and EDTA-free protease inhibitor cocktail [Roche]) with rotation at 4° C. for 1 h. All cell lysates were clarified by centrifugation at 15,000 rpm at 4° C. for 30 min and subjected to co-IP using protein G-conjugated magnetic beads according to the manufacturer's instructions (Millipore). Briefly, immune complexes were formed at 4° C. overnight by mixing 400 µl of cell lysate with 2 µg corresponding antibodies (rabbit anti-NS1, mouse anti-HA, rabbit control IgGs or mouse control IgGs) in a 500 35 µl reaction system containing 300 mM sodium chloride. Subsequently, the complexes were precipitated with protein G-conjugated magnetic beads at 4° C. for 1 h with rotation, followed by washing extensively with phosphate-buffered saline (PBS) containing 0.1% Tween 20 (Sigma). Finally, 40 proteins were eluted with 4× lithium dodecyl sulfate (LDS) sample buffer (ThermoFisher Scientific) supplemented with 100 mM DTT, heated at 70° C. for 10 min, and analyzed by Western blotting described as below.

SDS-PAGE and Western blotting. Proteins were resolved 45 in 12% SDS-PAGE gels and transferred onto a polyvinylidene difluoride (PVDF) membrane by using a Trans-Blot Turbo transfer system (Bio-Rad Laboratories, Hercules, Calif.). The blots were blocked in TBST buffer (10 mM Tris-HCl, pH 7.5, 150 mM NaCl, and 0.1% Tween 20) 50 supplemented with 5% skim milk for 1 h, followed by probing with primary antibodies (1:2,000 dilution) for 1 h at room temperature. After two washes with TBST buffer, the blots were incubated with a goat anti-mouse or goat antirabbit IgG conjugated to HRP (1:20,000 dilution) in TBST 55 buffer with 5% milk for 1 h, followed by three washes with TBST buffer. The antibody-protein complexes were detected using Amersham ECL Prime Western blotting detection reagent (GE Healthcare, Chicago, III.).

Mouse Experiments.

A129 mice (interferon type I receptor-knockout) were used to examine the virulence of recombinant WT or NS1 K265E ZIKV FSS13025. Experiments were performed according to a previously described protocol with some modifications (Shan et al., 2016b). In brief, 6-week-old 65 A129 mice were infected with 10⁴ PFU via the intraperitoneal route. Eight mice were used for each group. Calcium

60

and magnesium-free DPBS (ThermoFisher Scientific) was used to dilute the virus stocks to the desired concentration. DPBS injection was used as mock-infection. On day 1 to 4 post-infection, four mice from each cohort were bled via the retro-orbital sinus (RO) after being anesthetized. Serum was clarified by centrifugation at 6000 g for 5 min and immediately stored at -80° C. prior to plaque assay for viremia. All animal work was completed in compliance with the UTMB policy as approved by the Institutional Animal Care and Use Committee (IACUC).

Infection of Mosquitoes with ZIKV.

Aedes aegypti colony mosquitoes derived from Galveston, Tex., were fed for 30 min on blood meals. The blood meals consist of 1% (weight/vol) sucrose, 20% (vol/vol) FBS, 5 mM ATP, 33% (vol/vol) PBS-washed human blood cells (UTMB Blood Bank), and 33% (vol/vol) DMEM medium. The 1 ml-blood meals were combined with 1 ml virus offered in Hemotek 2-ml heated reservoirs (Discovery Workshops) covered with a mouse skin. Virus titer in the blood meals ranged from 6.0 to 6.5 log 10 PFU/ml. Infectious blood meals were loaded on cartons containing A. aegypti. Engorged mosquitoes were incubated at 28° C., 80% relative humidity on a 12:12 h light:dark cycle with ad libitum access to 10% sucrose for 14 days, then frozen at -20° C. overnight. To assess infection, whole bodies of individual mosquitoes were individually homogenized (Retsch MM300 homogenizer, Retsch Inc., Newton, Pa.) in DMEM with 20% FBS and 250 µg/ml amphotericin B. The samples were then centrifuged for 10 min at 5,000 rpm. Afterwards, 50 µl of supernatants were inoculated into 96-well plates containing Vero cells at 37° C. and 5% CO2 for 3 days. Cells were fixed with a mixture of ice-cold acetone and methanol (1:1) solution and immunostained as described previously (Shan et al., 2016b). The infection rate was calculated using the number of virus-positive mosquito bodies divided by the total number of engorged and incubated mosquitoes. Results

Identification of NS1 K265E Mutation.

To identify cell-adaptive mutation(s) that can increase the yields of ZIKV production on Vero cells, we used a one-step plaque-purification approach to isolate virus clones with increased replication competency using Cambodian strain FSS13025. This ZIKV strain was isolated in 2010 from the blood of a three-year old patient from Cambodia (Heang et al., 2012), and had been cultured thrice on Vero cells. This parental isolate generated heterogeneous plaque sizes on Vero cells (FIG. 1A, left panel), from which we purified viruses three large (S1-3) and three small plaques (S4-6). Representative plaque morphologies of the purified viruses are shown in FIG. 1A (right panels). Complete-genome sequencing was performed for the purified S1-6 viruses (FIG. 1B). All three large plaque biological clones (S1-3) shared an adenine-to-guanine substitution at genomic position 3,282 (A3282G; GenBank KU955593.1), resulting in a Lys-to-Glu change at the position 265 in NS1 protein (K265E). The sequence chromatograph showed a highly homogeneous A3282G mutation for S1-3 viruses, whereas no such mutation was recovered in any of the S4-6 biologically cloned viruses exhibiting small plaques (FIG. 1C). The results suggested that NS1 K265E mutation may enhance ZIKV replication on Vero cells.

Characterization of Recombinant NS1 K265E ZIKV FSS13025.

Since mutations other than NS1 K265E were also recovered from S1-3 viruses, we engineered the NS1 K265E mutation into the ZIKV strain FSS13025 to verify its role in

increased plaque morphology. Both WT and NS1 K265E mutant genomic RNAs were electroporated into Vero cells. An increasing number of the transfected cells expressed viral E protein from 24 to 72 h post-transfection (p.t.); interestingly, the K265E mutant RNA produced more ⁵ E-positive cells than the WT at 48 and 72 h p.t. (FIG. 1D). In addition, this mutant produced larger plaques than the WT virus (FIG. 1E).

To examine the effect of NS1 K265E on viral infectivity, we determined the RNA copy/plaque-forming unit (PFU) ratio for both WT and NS1 K265E viruses. The extracellular viral RNA copies represented total virus (including both infectious and non-infectious) released into the culture fluids, while the PFU numbers indicated the amounts of infectious virions. Both the WT and mutant (collected at 72 h p.t.) showed similar RNA copy/PFU ratios (FIG. 1F), indicating that NS1 K265E did not affect viral infectivity. Corroborating the plaque assay and IFA results, the mutant RNA yielded significantly more infectious virus than the WT RNA after transfection of cells (FIG. 1G). Genomic sequencing of the recombinant mutant virus revealed no mutations other than the engineered NS1 K265E change (data not shown). Collectively, the results demonstrated that the NS1 K265E mutation was responsible for the enhanced ZIKV replication on Vero cells.

Comparison of viral replication of WT or NS1 mutant ZIKV FSS13025 in cell culture. We compared the replication kinetics of WT and NS1 K265E viruses in mosquito (C6/36), hamster (BHK-21), monkey (Vero), and human (Huh7) cell lines. Interestingly, the mutant and WT viruses showed comparable replication kinetics on C6/36 and BHK-21 cells (FIG. 2A-B). In contrast, the mutant virus replicated much faster than the WT virus on Vero and Huh7 cells (FIG. 2C-D). Specifically, the mutant virus peaked at 84 h p.i. with a titer up to 10⁷ PFU/ml on Vero cells. Overall, the data suggested that NS1 K265E improved viral replication in a cell type-dependent manner.

NS1 K265E mutation enhances the replication of ZIKV strain PRVABC59 in Vero cells. To examine whether the effects of NS1 K265E on viral replication is ZIKV straindependent, we engineered this mutation into a new infectious cDNA clone of ZIKV Puerto Rico strain PRVABC59 (GenBank number KU501215) isolated in 2015 (Lanciotti et al., 2016). We chose PRVABC59 because this strain was previously used to produce an inactivated vaccine [with ⁴⁵ monkey efficacy (Abbink et al., 2016)] that is currently in phase I clinical trials (https://clinicaltrials.gov). As depicted in FIG. 3A, six RT-PCR fragments spanning the complete viral genome were individually cloned and assembled into the full-length cDNA of ZIKV in a single-copy vector 50 pCC1BAC, resulting in plasmid pFLZIKV-PRV. The plasmid could be induced to generate 10-20 copies/cell using L-arabinose in E. coli strain TransforMaxTM EPI300TM. Compared with the parental ZIKV isolate, the infectious cDNA clone had five nucleotide mutations (A1337G, 55 A2768T, A2771G, T8408A and C9176T), none of which changed the amino acid sequence (FIG. 3B).

The RNA transcribed from pFLZIKV-PRV was infectious, as evidenced by increasing E-positive cells upon transfection into Vero cells (FIG. **3**C). The culture fluids harvested from WT ZIKV-PRV RNA-transfected cells produced plaques on Vero cells on day 4 p.i. (FIG. **3**D). More importantly, the NS1 K265E mutant RNA-transfected cells showed a faster increase in E-positive cell numbers (FIG. **3**C) than the WT. The NS1 K265E virus produced larger plaques than the WT ZIKV-PRV (FIG. **3**D). The mutant ⁶⁵ RNA and virus replicated significantly faster than the WT counterparts in transfected (FIG. **3**E) and infected Vero cells

(FIG. **3**F), respectively. These data demonstrated that the replication enhancement of NS1 K265E was not ZIKV strain-dependent.

NS1 K265E mutation enhances virus assembly, but retards virus entry. To understand which step(s) of the viral infection cycle were affected by NS1 K265E mutation, we engineered the mutation into a luciferase reporter ZIKV replicon (Xie et al., 2016). After transfection of Vero cells with equal amounts of replicon RNAs, the WT and mutant produced comparable amounts of luciferase activity 2-46 h p.t. (FIG. 4A). The replicon results demonstrated that NS1 K265E mutation did not affect viral translation and RNA synthesis.

Next, we used recombinant Cambodian FSS13025 virus to examine the effect of the NS1 K265E mutation on a single infection cycle. FIG. 4B depicts the experimental flowchart. The total infection time was restricted to 20 h to avoid multiple rounds of infection. Vero cells were infected with equal amounts of WT and NS1 K265E mutant viruses at 37° C. After 1 h p.i., cells were washed with PBS to remove unattached viruses. Intracellular viral RNAs were quantified at 1, 14, and 20 h post-infection. Before extracting intracellular viral RNA, the cells were thoroughly washed with an alkaline high-salt solution to remove cell membrane-associated viruses. Besides intracellular viral RNA, we also measured intracellular and extracellular virions (using plaque assay) as well as extracellular viral RNAs at 14 and 20 h p.i. (FIG. 4C). Compared with the WT, the K265E mutant produced slightly more intracellular viral RNA, but generated >10-fold more extracellular viral RNA as well as >10-fold more intracellular and extracellular infectious viruses at 14 and 20 h p.i. (FIG. 4C). The data indicated that NS1 K265E mutation increased virus assembly in Vero cells.

Surprisingly, at 1 h p.i., the intracellular level of mutant viral RNA of was about half of the WT virus (FIG. 4C), suggesting that the mutation reduced virus attachment/entry. This observation prompted us to perform the experiment outlined in FIG. 4D to dissect the effect of NS1 K265E on virus attachment and/or entry. Vero cells were incubated with equal amounts of WT or mutant virus at 4° C. for 1 h. At this temperature, viruses could attach to the cell surface without entry. Both WT and mutant viruses bound to Vero cells with equal efficiencies (FIG. 4E, data set I). Further incubation at 37° C. initialized virus entry. After 0.5 h incubation at 37° C., the amount of intracellular mutant RNA was about 60% of the intracellular WT RNA (FIG. 4E, data set II); however, after additional 2.5 and 5.5 h incubation at 37° C., equal amounts of intracellular viral RNAs were detected for mutant and WT viruses (FIG. 4E, data set III&IV). Taken together, the results suggested that, besides enhancement of virion assembly, NS1 K265E may slow virus entry (FIG. 4F)

Mutation K265E increases NS1/NS2A interaction. The structure of ZIKV NS1 consists of an N-terminal β-roll, an epitope-rich wing domain, and a C-terminal β-ladder (Brown et al., 2016). Residue K265 is located at the C-terminal β-ladder, and is spatially clustered with two other positively charged residues (R294 and R347) on the surface of the NS1 molecule (FIG. 5A), suggesting that this region may participate in protein/protein interactions. Since NS1 was reported to interact with structural protein prM and E during virus assembly (Scaturro et al., 2015), we performed co-immunoprecipitation to examine whether mutation K265E affected those interactions (FIG. 5B). Western blotting of total cell lysates (collected at 32 h p.i.) showed higher levels of NS1, prM, and E protein expression in the mutant virus-infected cells than those in the WT-infected cells (FIG. 5C, right two lanes). This was expected because the mutant virus replicated more robustly than the WT. Interestingly, both prM and E proteins were co-immunoprecipitated by

NS1 in the WT- and mutant-infected cells (FIG. **5**C). Quantification (by normalizing the NS1 protein amounts) showed that WT and mutant K265E NS1 pulled down the prM or E protein at comparable efficiencies (FIG. **5**D), indicating that the mutation did not affect the NS1/prM or NS1/E interactions.

Since NS2A is known to modulate flavivirus assembly (Kummerer and Rice, 2002; Leung et al., 2008; Xie et al., 2013), we tested whether K265E changed the NS1/NS2A interaction. Due to the lack of availability of specific anti-10 bodies against ZIKV NS2A, we performed the co-immunoprecipitation experiment using a plasmid co-expressing NS1 and HA-tagged NS2A proteins. As shown in FIG. 5E, a plasmid encoding the polyprotein E24-NS1-NS2A-HA (E24 representing the last 24 amino acids of E protein to keep the correct topology of NS1-NS2A-HA on the ER membrane) was transfected into HEK293T cells. Upon translation, the polyproteins would be processed into E24, NS1, and NS2A-HA by host signalases (Lindenbach, 2013). Cell lysates were immunoprecipitated by mouse anti-HA IgG or control IgG. 20 NS1 could be pulled down together with NS2A-HA by the mouse anti-HA IgG, but not by the control IgG (FIG. 5F), demonstrating that NS1 interacted specifically with NS2A. Importantly, NS2A-HA pulled down significantly (1.2-fold) more K265E NS1 than the WT NS1 (FIG. 5G), suggesting ²⁵ that the mutation increased the binding of NS1 to NS2A. It should be noted that two species of NS2A-HA protein appeared in the denature SDS-PAGE (FIG. 5F), probably due to unknown modification(s) or degradation of NS2A-HA. The nature of the two NS2A-HA species remains to be 30 determined.

NS1 K265E mutation does not affect ZIKV virulence in the A129 mouse model. We evaluated the in vivo virulence of WT and mutant NS1 K265E ZIKVs in the A129 mice by monitoring the viremia and weight loss (Shan et al., 2016b). ³⁵ Equal amounts (1×10^4 PFU) of each virus were inoculated into mice via the intraperitoneal (i.p.) route. Unexpectedly, the WT and mutant viruses produced statistically indistinguishable levels of viremia (FIG. **6**A) and weight loss (FIG. **6**B). These data indicated that K265E did not affect ZIKV ⁴⁰ virulence in the A129 mouse model.

NS1 K265E mutation decreases viral infection of *Ae. aegypti* mosquitoes. To understand whether the NS1 K265E mutation affects viral fitness in mosquitoes, we determined the oral susceptibility of *A. aegypti* using artificial human ⁴⁵ bloodmeals containing approximately 10^6 PFU/ml of the K265E mutant or WT virus (Shan et al., 2016b). On day 14 post-feeding, engorged mosquitos were analyzed for the presence of virus in the bodies to estimate infection rates. As summarized in Table 1, NS1 K265E virus showed a significantly lower infection rate than the WT virus in mosquitoes, demonstrating that the mutation reduced virus fitness for infection of *A. aegypti* mosquitoes.

TABLE 1

Infection	of WT or NS1 K265E ZIKV FSS1	3025 in A. aegypti.
Virus	Blood-meal titer (LogPFU/ml)	Infection rate (%)*
WT	6.0	20/37 (54)
K265E	6.1	8/42 (19)

^aAfter blood meal, viral titers for both parental and recombinant viruses were measured by plaque assay to ensure the accuracy of virus amounts in the blood meal. ^bInfection rate = (number of infected mosquitos/number of engorged mosquitos) × 100%. *p = 0.002, Fisher's exact test, 2-tailed.

PrM H83R and NS3 S356F mutations further increase viral yield on Vero cells. Although the above results dem-

65

onstrated that NS1 K265E enhanced viral yield, we asked whether other cell adaptive mutations could further increase virus production on Vero cells. To address this question, we engineered two additional cell-adaptive mutations (prM H83R and NS3 S356F) in the context of NS1 K265E pFLZIKV-PRV. PrM H83R mutation was identified from passaging of ZIKV FSS13025 on Vero cells (our unpublished data). NS3 S356F mutation was recently reported to increase ZIKV replication in cell culture (Tsetsarkin et al., 2016). In vitro transcribed genomic RNAs (prM H83R+NS1 K265E; NS1 K265E+NS3 S356F, and prM H83R+NS1 K265E+NS3 S356F) were electroporated into Vero cells. At 72 h p.t., about 4-, 3-, and 6-fold more viruses were produced from the prM H83R+NS1 K265E, NS1 K265E+ NS3 S356F, and prM H83R+NS1 K265E+NS3 S356F RNA-transfected cells than the NS1 K265E RNA-transfected cells, respectively (FIG. 7A). All three mutants generated similar plaque morphologies as the NS1 K265E virus on Vero cells (FIG. 7A). Importantly, replication kinetics showed that the triple mutant virus (prM H83R+NS1 K265E+NS3 S356F) produced a peak viral titer of 1.6×10⁸ PFU/ml that was significantly higher than the other mutants (FIG. 7B). FIG. 7C directly compares the replication kinetics of the WT ZIKV PRVABC59 strain with its triple mutant. Remarkably, the triple mutant generated ≥27-fold more virus than the WT at various time post-infection. The results clearly indicate that the triple mutant would be an ideal candidate for the manufacturing of inactivated vaccine.

Virus Thermostability Assay.

Equal amounts $(2 \times 10^5 \text{ PFU/ml})$ of recombinant WT and NS1 K265E mutant ZIKV strain FSS13025, and DENV-2 New Guinea strain (as positive control) in DMEM medium containing 2% FBS were pre-incubated at 37° C. or 40° C. for 30 min or 60 min, respectively. After the treatment, virus titers in each sample were determined by plaque assay. For determining the initial input amount of viruses, untreated samples were immediately titrated for plaque assay. The relative infectivity was calculated by normalizing the virus titers of treatment groups to those of untreated groups. Experiments were performed three times in triplicate. See FIG. **8**.

CONCLUSIONS

Purified inactivated vaccine (PIV) is one of the frontrunners in the rapidly evolving ZIKV vaccine pipeline. A PIV using ZIKV strain PRVABC59 completely protects rhesus macaques from ZIKV challenge (Abbink et al., 2016), and is currently undergoing a phase I clinical trial (https:// clinicaltrials.gov). Licensed PIVs have been developed for TBEV and JEV (Shan et al., 2016a). Technologies that can increase the yield of virus production with shortened manufacture time will greatly reduce the cost and increase the vaccine accessibility. Here, we report a ZIKV with triple
mutations (prM H83R+NS1 K265E+NS3 S356F) that greatly increased viral replication in Vero cells. Our findings will be useful for PIV manufacture because Vero cells are approved for vaccine production (Griffiths, 1987).

The NS1 K265E mutation was initially identified from plaque purification using the parental ZIKV strain FSS13025. This mutation was consistently recovered from viruses recovered from large plaques, but not from small plaques (FIG. 1A-C). Using an infectious clone of ZIKV FSS13025, we confirmed that mutation K265E in NS1 was responsible for the enhanced viral replication (FIGS. 1D-G & 2C). Interestingly, the K265E mutation increased viral replication in Vero and Huh7 cells, but not in C6/36 and BHK-21 cells (FIG. 2), suggesting that the enhancement was cell type-dependent. When the same mutation was introduced into a clone derived from epidemic strain of ZIKV PRVABC59, it also increased viral replication in Vero cells (FIG. 3), indicating that its effect on viral replication was not 5 ZIKV strain-dependent.

Mechanistically, we provided five lines of evidence that NS1 K265E modulates the steps of viral entry and assembly during an infection cycle. (i) NS1 K265E did not affect virus attachment to the cell surface (FIG. 4E), but delayed virus 10 entry. At 1 h post-attachment at 37° C., the mutation reduced entry by 40%; however, entry reached WT levels at 3 and 6 h post-attachment at 37° C. (FIG. 4E). (ii) The NS1 K265E had no effect on viral protein translation and RNA synthesis in a luciferase replicon assay (FIG. 4A). (iii) The NS1 K265E mutation increased virus assembly, leading to higher levels of intracellular and extracellular infectious viruses (FIG. 4C). (iv) The RNA copy/PFU ratios of WT and NS1 K265E mutant viruses were indistinguishable (FIG. 1F), suggesting that the mutation did not affect virus maturation 20 (e.g., cellular furin-mediated cleavage of prM to pr and M proteins). (v) Both WT and NS1 K265E ZIKV FSS13025 showed similar thermostability when incubated at physiological temperatures of 37° C. or 42° C. for up to 1 h (FIG. 8), suggesting that the mutation did not affect viral thermo- 25 stability.

Flavivirus entry and assembly are tightly controlled by the spatial and temporal interplays between host and viral factors. How does the NS1 K265E mutation affect both ZIKV entry and assembly? The flavivirus NS1 is a multi- 30 functional protein involved in viral replication (Lindenbach and Rice, 1997, 1999; Youn et al., 2012), virion assembly (Scaturro et al., 2015), and evasion of host immune response (Avirutnan et al., 2011; Chung et al., 2006). The crystal structure of ZIKV NS1 shows an elongated hydrophobic 35 surface for membrane association and a polar surface that varies substantially among different flaviviruses (Brown et al., 2016). Amino acid K265, together with two nearby positively charged residues (R294 and R347), could contribute to the positive surface of the β -ladder domain of NS1 40 (FIG. 5A). The K265E mutation might perturb the charge in the β -ladder domain, leading to change(s) in network interactions between viral-viral or viral-host factors. Indeed, our co-immunoprecipitation experiments revealed that the mutation increased the NS1/NS2A interaction (FIGS. 5F&G) 45 without affecting the NS1/prM and NS1/E interactions. Since NS2A has been well documented to modulate flavivirus assembly (Kummerer and Rice, 2002; Leung et al., 2008; Xie et al., 2013), the increased NS1/NS2A interaction might be responsible for the enhanced virion assembly. On 50 the other hand, because the NS1 K265E-mediated enhancement of virion production was cell type-dependent, cellular factors (e.g., proteins and/or lipids) must be involved in the process of enhanced virion assembly. Proteomic analysis of host proteins that bind to NS1 or NS2A in infected cells 55 could be pursued to identify cellular factors important for flavivirus assembly.

The flavivirus E protein interacts with multiple cell surface receptors and attachment factors to facilitate virus entry. Many cell surface factors are reported to mediate flavivirus ⁶⁰ entry, including heat shock proteins, phosphatidylserine receptors [TIM (Tyro3, Ax1, and Mer) and TAM (T cell, immunoglobulin, and mucin)], claudin-1, heparan sulfate, dendritic cell-specific intracellular adhesion molecular-3 grabbing nonintegrin (DC-SIGN), mannose receptor, and ⁶⁵ C-type lectin domain family 5 member A (Perera-Lecoin et al., 2014). ZIKV selectively binds to TAM, but not TIM

phosphatidylserine transmembrane receptor (Hamel et al., 2015). The ER membrane contains phosphatidylserine lipids in the luminal leaflet (Leventis and Grinstein, 2010), and NS1 is proposed to assist in virion morphogenesis via its lipid-remodeling activity, membrane association capability, and interactions with viral non-structural and structural proteins (Scaturro et al., 2015). It is thus tempting to speculate that mutation K265E alters NS1's ability to recruit specific lipids during virion budding. The altered lipid components in virion bilayer could consequently modulate the kinetics of viral entry.

In contrast to the enhanced viral replication on Vero cells, NS1 K265E did not significantly change the virulence of ZIKV in the A129 mice (FIG. 6). The in vitro and in vivo discrepancy could be due to cell type-specific enhancement of the mutant virus replication (FIG. 2). In agreement with the in vivo results, NS1 K265E virus showed a WT level of viral replication on rodent BHK-21 cells (FIG. 2B). Therefore, caution should be taken when extrapolating mouse virulence result to non-human primates and humans. This is particularly important when the NS1 K265E mutation is engineered into a live-attenuated ZIKV vaccine candidate (for the purpose of increase in vaccine production on Vero cells). In such case, the effect of NS1 K265E mutation on virulence should first be directly evaluated in non-human primates.

In mosquito hosts, NS1 K265E virus replicated to the WT level on C6/36 cells, but significantly reduced its ability to infect *A. aegypti* (Table 1). The reduced vector infectivity of NS1 K265E ZIKV could explain its rarity in clinical isolates. Only 3 out of 169 ZIKV full-length sequences in the GenBank exhibit the NS1 K265E mutation. Since Vero cells are routinely used to isolate ZIKV, it remains to be determined whether the NS1 265E sequence from the 3 clinical isolates (GenBank number ANN83272, AOX49265, and AMS00611) resulted from adaptation to Vero cells during virus isolation.

Our study has provided a new platform to reproducibly generate high yields of ZIKV for PIV manufacture. Specifically, the infectious ZIKV cDNA clone of PRVABC59 containing the triple mutations (prM H83R+NS1 K265E+ NS3 S356F) could be used to launch ZIKV production on Vero cells. The mechanism of how prM H83R and NS3 S356F mutations increase viral replication remains to be understood. In addition, further studies are needed to investigate the effect of prM H83R and NS3 S356F mutations on ZIKV virulence and vector infection. Nevertheless, compared with the traditional method of virus amplification from seed viruses, the cDNA clone-launched PIV manufacture platform has the advantages of higher yields, shortened manufacture time, higher reproducibility (viruses directly produced from in vitro synthesized RNA), and a reduced risk of contamination (due to the elimination of isolation and multiple rounds of passaging of seed viruses in cell culture). Since ZIKV strain PRVABC59 was used for the current PIV clinical trial, our mutant cDNA plasmid could be readily used for this vaccine manufacture.

In summary, this invention provides an infectious cDNA clone-launched platform to maximize the yield of ZIKV. A single NS1 protein substitution (K265E) was identified to increase ZIKV replication on Vero cells (a cell line approved for vaccine production) for both Cambodian FSS13025 and Puerto Rico PRVABC59 strains. The NS1 mutation did not affect viral RNA synthesis, but significantly increased virion assembly, probably through an increased interaction between NS1 and NS2A (a known regulator of flavivirus assembly). The NS1 mutant virus retained wildtype viru-

45

60

lence in the A129 mouse model, but decreased its competence to infect Aedes aegypti mosquitoes. To further increase virus yield, we constructed an infectious cDNA clone of the clinical trial PIV strain PRVABC59 containing three viral replication-enhancing mutations (NS1 K265E, prM H83R, -5 and NS3 S356F) that could generate a viral titer of $>10^8$ PFU/ml on Vero cells, and produced >25-fold more ZIKV than the wildtype parent on Vero cells. Taken together, the results demonstrate that the infectious cDNA clone containing these triple mutations represents an attractive platform to reproducibly generate high yields of ZIKV, which could be readily used for manufacture of PIV for a vaccine clinical trial. This cDNA clone-launched manufacture platform has the advantages of higher virus yield, shortened manufacture 15 time, and minimized chance of contamination. The enhancement of virus production by the cell-adaptive triple mutations and the reported reverse genetic system could be used to manufacture the ZIKV strain PRVABC59-derived purified inactivated vaccine (PIV) that showed efficacy in mon- 20 10. Hamel, R., Dejarnac, O., Wichit, S., Ekchariyawat, P., keys and is currently in phase I clinical trial. High-yield manufacture of this PIV is essential for its development and vaccine access.

One skilled in the art will readily appreciate that the present invention is adapted to carry out the objects and 25 11. Heang, V., Yasuda, C. Y., Sovann, L., Haddow, A. D., obtain the ends and advantages mentioned, as well as those inherent therein. The prior examples along with the methods, procedures, treatments, molecules, and specific compounds described herein are presently representative of preferred embodiments, are examples, and are not intended 30 as limitations on the scope of the invention. Changes therein and other uses will occur to those skilled in the art which are encompassed within the spirit of the invention as defined by the scope of the claims.

In the following listing of claims, all sequence numbers 35 are given with reference to the amino acid sequences of the ZIKV proteins encoded by ZIKV strain FSS13025 (Gen-Bank Accession No. KU955593.1 (SEQ ID NO: 10 and SEQ ID NO: 11)) but are applicable to all homologous sequences, as would be appreciated by one of skill in the art. This 40 includes, for example, ZIKV strain PRVABC59.

The contents of the following references and all other references which are cited in this application are incorporated by reference in their entirety.

REFERENCES

- 1. Abbink, P., Larocca, R. A., De La Barrera, R. A., Bricault, C. A., Moseley, E. T., Boyd, M., Kirilova, M., Li, Z., Ng'ang'a, D., Nanayakkara, O., et al. (2016). Protective 50 17. Leung, J. Y., Pijlman, G. P., Kondratieva, N., Hyde, J., efficacy of multiple vaccine platforms against Zika virus challenge in rhesus monkeys. Science 353, 1129-1132.
- 2. Atieh, T., Baronti, C., de Lamballerie, X., and Nougairede, A. (2016). Simple reverse genetics systems for Asian and African Zika viruses. Sci Rep 6, 39384. 55
- 3. Avirutnan, P., Hauhart, R. E., Somnuke, P., Blom, A. M., Diamond, M. S., and Atkinson, J. P. (2011). Binding of flavivirus nonstructural protein NS1 to C4b binding protein modulates complement activation. J Immunol 187, 424-433.
- 4. Brown, W. C., Akey, D. L., Konwerski, J. R., Tarrasch, J. T., Skiniotis, G., Kuhn, R. J., and Smith, J. L. (2016). Extended surface for membrane association in Zika virus NS1 structure. Nat Struct Mol Biol 23, 865-867.
- 5. Chung, K. M., Liszewski, M. K., Nybakken, G., Davis, A. 65 E., Townsend, R. R., Fremont, D. H., Atkinson, J. P., and Diamond, M. S. (2006). West Nile virus nonstructural

protein NS1 inhibits complement activation by binding the regulatory protein factor H. Proc Natl Acad Sci USA 103, 19111-19116.

- 6. Dawes, B. E., Smalley, C. A., Tiner, B. L., Beasley, D. W. C., Milligan, G. N., Reece, L. M., Hombach, J., and Barrett, A. D. T. (2016). Research and development of Zika virus vaccines. Npj Vaccines 1, 16007.
- 7. Dick, G. W., Kitchen, S. F., and Haddow, A. J. (1952). Zika virus. I. Isolations and serological specificity. Trans R Soc Trop Med Hyg 46, 509-520.
- 8. Dowd, K. A., Ko, S. Y., Morabito, K. M., Yang, E. S., Pelc, R. S., DeMaso, C. R., Castilho, L. R., Abbink, P., Boyd, M., Nityanandam, R., et al. (2016). Rapid development of a DNA vaccine for Zika virus. Science 354, 237-240.
- 9. Griffiths, E. (1987). Acceptability of cell substrates for production of biologicals. Report of a WHO Study Group on Biologicals. World Health Organization Technical Report 747
- Neyret, A., Luplertlop, N., Perera-Lecoin, M., Surasombatpattana, P., Talignani, L., Thomas, F., et al. (2015). Biology of Zika Virus Infection in Human Skin Cells. J Virol 89, 8880-8896.
- Travassos da Rosa, A. P., Tesh, R. B., and Kasper, M. R. (2012). Zika virus infection, Cambodia, 2010. Emerg Infect Dis 18, 349-351.
- 12. Kostyuchenko, V. A., Lim, E. X., Zhang, S., Fibriansah, G., Ng, T. S., Ooi, J. S., Shi, J., and Lok, S. M. (2016). Structure of the thermally stable Zika virus. Nature 533, 425-428.
- 13. Kummerer, B. M., and Rice, C. M. (2002). Mutations in the yellow fever virus nonstructural protein NS2A selectively block production of infectious particles. J Virol 76, 4773-4784.
- 14. Lanciotti, R. S., Lambert, A. J., Holodniy, M., Saavedra, S., and Signor Ldel, C. (2016). Phylogeny of Zika Virus in Western Hemisphere, 2015. Emerg Infect Dis 22, 933-935.
- 15. Larocca, R. A., Abbink, P., Peron, J. P., Zanotto, P. M., Iampietro, M. J., Badamchi-Zadeh, A., Boyd, M., Ng'ang'a, D., Kirilova, M., Nityanandam, R., et al. (2016). Vaccine protection against Zika virus from Brazil. Nature 536, 474-478.
- 16. Lazear, H. M., Govero, J., Smith, A. M., Platt, D. J., Fernandez, E., Miner, J. J., and Diamond, M. S. (2016). A Mouse Model of Zika Virus Pathogenesis. Cell Host Microbe 19, 720-730.
- Mackenzie, J. M., and Khromykh, A. A. (2008). Role of nonstructural protein NS2A in flavivirus assembly. J Virol 82, 4731-4741.
- 18. Leventis, P. A., and Grinstein, S. (2010). The distribution and function of phosphatidylserine in cellular membranes. Annu Rev Biophys 39, 407-427.
- 19. Lindenbach, B. D., Murray, C. L., Thiel, H. J., Rice, C. M. (2013). Flaviviridae. In Fields Virology, 6th, Vol. 1, D. M. Knipe and P. M. Howley, eds. ((Philadelphia: Lippincott William & Wilkins), pp. 712-746).
- 20. Lindenbach, B. D., and Rice, C. M. (1997). trans-Complementation of yellow fever virus NS1 reveals a role in early RNA replication. J Virol 71, 9608-9617.
- 21. Lindenbach, B. D., and Rice, C. M. (1999). Genetic interaction of flavivirus nonstructural proteins NS1 and NS4A as a determinant of replicase function. J Virol 73, 4611-4621.

- 22. Perera-Lecoin, M., Meertens, L., Carnec, X., and Amara, A. (2014). Flavivirus Entry Receptors: An Update. Viruses Basel 6, 69-88.
- 23. Petersen, L. R., Jamieson, D. J., Powers, A. M., and Honein, M. A. (2016). Zika Virus. N Engl J Med 374, 5 1552-1563.
- 24. Rossi, S. L., Tesh, R. B., Azar, S. R., Muruato, A. E., Hanley, K. A., Auguste, A. J., Langsjoen, R. M., Paessler, S., Vasilakis, N., and Weaver, S. C. (2016). Characteriza-10tion of a Novel Murine Model to Study Zika Virus. Am J Trop Med Hyg 94, 1362-1369.
- 25. Scaturro, P., Cortese, M., Chatel-Chaix, L., Fischl, W., and Bartenschlager, R. (2015). Dengue Virus Non-structural Protein 1 Modulates Infectious Particle Production 15 via Interaction with the Structural Proteins. PLoS Pathog 11, e1005277.
- 26. Schuler-Faccini, L., Ribeiro, E. M., Feitosa, I. M. L., Horovitz, D. D. G., Cavalcanti, D. P., Pessoa, A., Doriqui, M. J. R., Neri, J. I., Neto, J. M. D., Wanderley, H. Y. C., et al. (2016). Possible Association Between Zika Virus Infection and Microcephaly-Brazil, 2015. Mmwr-Morbid Mortal W 65, 59-62.
- 27. Schwarz, M. C., Sourisseau, M., Espino, M. M., Gray, E. S., Chambers, M. T., Tortorella, D., and Evans, M. J. 25 (2016). Rescue of the 1947 Zika Virus Prototype Strain with a Cytomegalovirus Promoter-Driven cDNA Clone. mSphere 1.
- 28. Shan, C., Xie, X., Barrett, A. D., Garcia-Blanco, M. A., Tesh, R. B., Vasconcelos, P. F., Vasilakis, N., Weaver, S. 30 C., and Shi, P. Y. (2016a). Zika Virus: Diagnosis, Therapeutics, and Vaccine. ACS Infect Dis 2, 170-172.
- 29. Shan, C., Xie, X., Muruato, A. E., Rossi, S. L., Roundy, C. M., Azar, S. R., Yang, Y., Tesh, R. B., Bourne, N., Barrett, A. D., et al. (2016b). An Infectious cDNA Clone 35 of Zika Virus to Study Viral Virulence, Mosquito Transmission, and Antiviral Inhibitors. Cell Host Microbe 19, 891-900.

- 30. Sirohi, D., Chen, Z., Sun, L., Klose, T., Pierson, T. C., Rossmann, M. G., and Kuhn, R. J. (2016). The 3.8 A resolution cryo-EM structure of Zika virus. Science 352, 467-470.
- 31. Tsetsarkin, K. A., Kenney, H., Chen, R., Liu, G., Manukvan, H., Whitehead, S. S., Laassri, M., Chumakov, K., and Pletnev, A. G. (2016). A Full-Length Infectious cDNA Clone of Zika Virus from the 2015 Epidemic in Brazil as a Genetic Platform for Studies of Virus-Host Interactions and Vaccine Development. MBio 7.
- 32. Weger-Lucarelli, J Duggal, N. K., Bullard-Feibelman, K., Veselinovic, M., Romo, H., Nguyen, C., Ruckert, C., Brault, A. C., Bowen, R. A., Stenglein, M., et al. (2017). Development and Characterization of Recombinant Virus Generated from a New World Zika Virus Infectious Clone. J Virol 91.
- 33. Xie, X., Gayen, S., Kang, C., Yuan, Z., and Shi, P. Y. (2013). Membrane topology and function of dengue virus NS2A protein. J Virol 87, 4609-4622.
- 34. Xie, X., Zou, J., Shan, C., Yang, Y., Kum, D. B., Dallmeier, K., Neyts, J., and Shi, P. Y. (2016). Zika Virus Replicons for Drug Discovery. EBioMedicine 12, 156-160.
- 35. Youn, S., Li, T., McCune, B. T., Edeling, M. A., Fremont, D. H., Cristea, I. M., and Diamond, M. S. (2012). Evidence for a genetic and physical interaction between nonstructural proteins NS1 and NS4B that modulates replication of West Nile virus. J Virol 86, 7360-7371.
- 36. Zou, J Xie, X., Lee le, T., Chandrasekaran, R., Reynaud, A., Yap, L., Wang, Q. Y., Dong, H., Kang, C., Yuan, Z., et al. (2014). Dimerization of flavivirus NS4B protein. J Virol 88, 3379-3391.

In the preceding procedures, various steps have been described. It will, however, be evident that various modifications and changes may be made thereto, and additional procedures may be implemented, without departing from the broader scope of the exemplary procedures as set forth in the claims that follow.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 11 <210> SEO ID NO 1 <211> LENGTH: 44 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: forward primer - P1 <400> SEQUENCE: 1 gatgcggccg caccatgaat ggatctattt cccttatgtg cttg <210> SEQ ID NO 2 <211> LENGTH: 52 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: reverse primer - P2 <400> SEQUENCE: 2 taatctggaa catcgtatgg gtaggatccc cgcttcccac tccttgtgag ca <210> SEQ ID NO 3 <211> LENGTH: 11

44

52

<212> TYPE: PRT

<213> ORGANISM: influenza virus

-continued

<400> SEQUENCE: 3 Gly Ser Tyr Pro Tyr Asp Val Pro Asp Tyr Ala 5 1 10 <210> SEQ ID NO 4 <211> LENGTH: 45 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PCR using primer P1 and P3 <400> SEQUENCE: 4 gacetegage taagegtaat etggaacate gtatgggtag gatee 45 <210> SEQ ID NO 5 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: probe with 5'-FAM reporter dye, 3' IBFQ & ZEN quenchers <220> FEATURE: <221> NAME/KEY: MOD_RES <222> LOCATION: (1)..(1) <223> OTHER INFORMATION: linked to FAM <220> FEATURE: <221> NAME/KEY: MOD_RES <222> LOCATION: (10)..(10) <223> OTHER INFORMATION: linked to Zen <220> FEATURE: <221> NAME/KEY: MOD_RES <222> LOCATION: (31)..(31) <223> OTHER INFORMATION: linked to 3IABkFQ <400> SEQUENCE: 5 31 agectaeett gacaageaat cagacaetea a <210> SEQ ID NO 6 <211> LENGTH: 17 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: forward primer - ZIKV 1193F <400> SEQUENCE: 6 ccgctgccca acacaag 17 <210> SEQ ID NO 7 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: reverse primer - ZIKV 1269R <400> SEQUENCE: 7 ccactaacgt tcttttgcag acat 24 <210> SEQ ID NO 8 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: forward primer - M GAPDH-F <400> SEQUENCE: 8 aggteggtgt gaaeggattt g 21 -continued

-21)> SI	TI OF	סוא ר	9												
	1> LH															
	2> TY															
	3 > OF			Art	ific:	ial :	Seque	ence								
)> FH						-									
<223	3 > 01	THER	INFO	ORMA'	TION	: re	verse	e pr:	imer	- M	GAPI	OH-R				
<40)> SH	EQUEI	ICE :	9												
tgta	agaco	cat o	gtagt	ttga	gg t	ca										23
)> SH															
	l> LH			0807												
	2> TY															
	3 > OF			Zika	a vi:	rus										
)> FE			ana												
	l> N# 2> L0				٥)	(100)	701									
	2> L()> P(
	3> D7 3> D7							. KU	9555	93.1						
	9> D7 9> D7															
										1)	(108)	07)				
<40)> SH	EQUEI	ICE :	10												
agti	gttę	gat (ctgto	gtgaa	at ca	agaci	tgcga	a caç	gttc	gagt	ttga	aagco	gaa a	agcta	agcaac	60
agta	atcaa	aca ç	ggttt	ttati	tt t	ggati	ttgga	a aad	cgaga	agtt	tct	ggtc				116
														Lys	Asn	
													1			
cca	aad	aad	aa 2	tee	aas	aas	tte	caa	att	ata	aat	ato	cta	aa a	cac	164
	-	-								-	Asn	-			-	
-0	5 5	-10	-10		1	10					15		4	-10	J	
						-					-					
gga	gta	gcc	cgt	gtg	agc	ccc	ttt	ggg	ggc	ttg	aag	agg	ctg	cca	gcc	212
Gly	Val	Ala	Arg	Val	Ser	Pro	Phe	Gly	Gly	Leu	Lys	Arg	Leu	Pro	Ala	
20			2		25			-	-	30	-	2			35	
											gtc					260
Gly	Leu	Leu	Leu	-	His	Gly	Pro	Ile	-	Met	Val	Leu	Ala		Leu	
				40					45					50		
aa~	+++	++~	200	++~		<i>a</i>	a+ ~	a . ~		t ~~	a+~	aa+	a+ -	at 7	aat	308
-		-	-		-	-		-			ctg Leu					500
ла	FIIG	ыец	Arg 55	r ne	1111	пта	тте	цув 60	LTO	SGT.	ыец	чтγ	ьец 65	тте	11011	
													55			
aga	tgg	ggt	tca	gtg	ggg	aaa	aaa	gag	gct	atg	gaa	ata	ata	aag	aag	356
-									-	-	Glu			-	-	
		70					75					80				
											atc					404
Phe		Lys	Asb	Leu	Ala		Met	Leu	Arg	Ile	Ile	Asn	Ala	Arg	Lys	
	85					90					95					
a-~	a . ~	a . ~	200		<i></i>	200	ast.	a.4+	o~+	at ~		-++	a++	aa -	ata	452
	-	-	-	-			-		-	-	gga Glv		-			452
100	пля	цув	лıу	лıу	105	1111	чар	1111	Det	110	Gly	тт с	var	σтγ	115	
cta	cta	acc	aca	gcc	atq	gca	gta	gaq	gtc	act	aga	cqt	gga	aat	gca	500
											Arg					
				120					125		0	0	-	130		
		-		-	-	-	-	-	-		gag	-				548
Tyr	Tyr	Met	Tyr	Leu	Asp	Arg	Ser	Asp	Ala	Gly	Glu	Ala	Ile	Ser	Phe	
			135					140					145			
cca	acc	aca	atg	ggg	atg	aat	aag	tgt	tat	ata	cag	atc	atg	gat	ctt	596
Pro	Thr	Thr	Met	Gly	Met	Asn	Lys	Cys	Tyr	Ile	Gln	Ile	Met	Asp	Leu	
		150					155					160				
		-	-	-	-		-	-		-	tgc		-	-	-	644
Gly		Met	Cys	Asp	Ala		Met	Ser	Tyr	Glu	Cys	Pro	Met	Leu	Asp	
	165					170					175					
		-	-		-	-	-	-	-		tgc		-	-		692
Jlu	Gly	Val	Glu	Pro	Asb	Asp	Val	Asp	Сүз	Trp	Суз	Asn	Thr	Thr	Ser	

-continued

His 500	Trp	Leu	Val	His	Lys 505	Glu	Trp	Phe	His	Asp 510	Ile	Pro	Leu	Pro	Trp 515	
					acc Thr											1700
					gac Asp											1748
					gga Gly											1796
					ggt Gly											1844
					atg Met 585											1892
					gcg Ala											1940
					aca Thr											1988
					gct Ala											2036
					ata Ile											2084
					atg Met 665											2132
					gtc Val											2180
					att Ile											2228
					gtc Val											2276
					aac Asn											2324
					tca Ser 745											2372
				-	ttg Leu	-			-		-			-		2420
					atg Met											2468
					tct Ser											2516
-	-	-	-	-	tgc Cys						-			-	-	2564

-continued

				gac Asp													2612	
				gtc Val 840													2660	
				aga Arg			Asn						er N				2708	
				atc Ile									eu 1				2756	
				aaa Lys								G1					2804	
				gag Glu													2852	
				gca Ala 920				Asn						/al			2900	
-		-	-	gaa Glu	-					-	-		p Z		-		2948	
	~ ~	~ ~	-	cat His			~~~	~					er N	-	~ ~		2996	
				gat Asp								Al Al					3044	
				gga Gly													3092	
				aag Lys 1000	Asr					j L					a H		3137	
		gag Glu		aaa Lys 1015	Thr		gaa Glu			> L	•			c ac 3 Th	r Le	•	3182	
				ata Ile 1030	Glu		ı agt ı Ser			i I				c aa b Ly	s Se		3227	
				ctc Leu 1045	Ser					A:					r A		3272	
		-		999 Gly 1060	Pro			-	-	ı G	-		-	a at 1 Il	e A		3317	
				cca Pro 1075	Gly					s V					r C		3362	
		-		cca Pro 1090	Ser		g aga 1 Arg			T T			-	gg r Gl	y A:		3407	
			-	tgg Trp 1105	Cys	-			-	s Tl		-		c cc > Pr	o Le	-	3452	
				aaa Lys 112(Asp					G					e A:		3497	

-continued

ccc Pro	agg Arg	aaa Lys	gaa Glu	cca Pro 1135	Glu	agt Ser	aac Asn	tta Leu	gta Val 1140	agg Arg	tca Ser	atg Met	gtg Val	act Thr 1145	3542
				gat Asp 1150											3587
				atg Met 1165											3632
				ata Ile 1180											3677
				ttt Phe 1195											3722
				acc Thr 1210											3767
				ctg Leu 1225											3812
				att Ile 1240											3857
				ttg Leu 1255											3902
				gac Asp 1270											3947
				ata Ile 1285											3992
				atc Ile 1300											4037
				gcg Ala 1315											4082
				tct Ser 1330											4127
				atg Met 1345											4172
				gtg Val 1360					ttg Leu 1365						4217
-		-		ccc Pro 1375		-	-	-			-	-		-	4262
	-	-	-	gct Ala 1390				-	-		-			-	4307
				gcc Ala 1405											4352
				agt Ser											4397

-continued

												,			
				1420					1425					1430	
				aaa Lys 1435	Asp					Gly					4442
				cta Leu 1450											4487
				ccc Pro 1465											4532
				ggc Gly 1480	Met										4577
				gtg Val 1495	Tyr										4622
				cct Pro 1510											4667
				tac Tyr 1525	Arg										4712
				gtg Val 1540	Gly										4757
				aca Thr 1555											4802
				tac Tyr 1570	Trp										4847
				tgg Trp 1585	Lys										4892
				ttg Leu 1600											4937
				ccc Pro 1615											4982
				ctg Leu 1630											5027
				tgt Cys 1645											5072
				aat Asn 1660											5117
				gag Glu 1675					tgc Cys 1680						5162
				cag Gln 1690											5207
				aga Arg 1705											5252
aaa	aca	aga	ctc	cgc	act	gtg	atc	tta	gct	cca	acc	agg	gtt	gtc	5297

46

-continued

Lys	Thr	Arg	Leu	Arg 1720	Thr	Val	Ile	Leu	Ala 1725	Pro	Thr	Arg	Val	Val 1730	
				gag Glu 1735											5342
				gtc Val 1750											5387
				cat His 1765											5432
		•		aac Asn 1780					att Ile 1785			~ ~	•		5477
		-		tca Ser 1795					aga Arg 1800						5522
				ggc Gly 1810											5567
				cgt Arg 1825											5612
				gtg Val 1840											5657
				acg Thr 1855											5702
				aat Asn 1870											5747
				gtc Val 1885					aga Arg 1890						5792
				aca Thr 1900					tgg Trp 1905						5837
				gag Glu 1915										0	5882
				aga Arg 1930											5927
				gct Ala 1945											5972
				999 Gly 1960											6017
				tat Tyr 1975					gca Ala 1980						6062
	-			ctt Leu 1990			_	-	ctt Leu 1995		-				6107
		-		ctc Leu 2005		-	_		tat Tyr 2010	-			-	-	6152

-continued

							aag Lys 2025					6197
							aga Arg 2040					6242
				Val			gga Gly 2055					6287
				Asp			aac Asn 2070					6332
							aga Arg 2085					6377
				Trp			aga Arg 2100					6422
				Phe			gcc Ala 2115					6467
							gga Gly 2130					6512
							gac Asp 2145					6557
				Gly			tac Tyr 2160					6602
							atg Met 2175					6647
							gtc Val 2190					6692
			atg Met 2200	Gly			gtg Val 2205		д1 <u>у</u> ддд			6737
				Leu			gag Glu 2220				5	6782
							ctg Leu 2235					6827
	-	-		-		-	gac Asp 2250		atg Met	-		6872
	-	-	-			-	ggc Gly 2265	-		-		6917
-			-		-	-	agt Ser 2280	-	-			6962
							ata Ile 2295					7007
							gct Ala 2310					7052

50

-continued

			acc Thr 2320					Āla				7097
			tcc Ser 2335				gcc Ala 2340					7142
			ggt Gly 2350									7187
			cta Leu 2365							tta Leu		7232
-			gtg Val 2380				ctc Leu 2385					7277
			999 Gly 2395				gct Ala 2400					7322
			gct Ala 2410					Pro				7367
			gac Asp 2425				aca Thr 2430			ccc Pro		7412
			gga Gly 2440									7457
			tcg Ser 2455									7502
			gct Ala 2470				ttg Leu 2475			ggc Gly		7547
	-		aac Asn 2485			-		Ser	-	-		7592
			tac Tyr 2500	-			tct Ser 2505					7637
			ggc Gly 2515	Leu				Gly				7682
			gag Glu 2530					Leu				7727
			tac Tyr 2545									7772
			gcc Ala 2560									7817
		-	gtg Val 2575				gca Ala 2580	Lys				7862
			tac Tyr 2590									7907
			ggg Gly				tat Tyr					7952

US 10,240,130 B2

53

											00		.nuc	a	
				2605					2610					2615	
				gtg Val 2620	Lys					Gly					7997
				ttg Leu 2635											8042
ctt Leu	aag Lys	agt Ser	д1 ^д ааа	gtg Val 2650	gac Asp	gtc Val	ttt Phe	cat His	atg Met 2655	gcg Ala	gct Ala	gag Glu	ccg Pro	tgt Cys 2660	8087
				tgt Cys 2665	Asp					Ser					8132
				cgg Arg 2680											8177
				aga Arg 2695											8222
				act Thr 2710	Met										8267
				gga Gly 2725											8312
				tac Tyr 2740											8357
				acc Thr 2755											8402
д1 <u>у</u> ддд	ccc Pro	agg Arg	agg Arg	cca Pro 2770	gtg Val	aaa Lys	tat Tyr	gaa Glu	gag Glu 2775	gat Asp	gtg Val	aat Asn	ctc Leu	ggc Gly 2780	8447
				gct Ala 2785											8492
				aac Asn 2800											8537
gaa Glu	acg Thr	tgg Trp	ttc Phe	ttt Phe 2815	gac Asp	gag Glu	aac Asn	cac His	cca Pro 2820	tat Tyr	agg Arg	aca Thr	tgg Trp	gct Ala 2825	8582
				tac Tyr 2830	Glu										8627
				gtt Val 2845											8672
			-	aca Thr 2860			-	-		-			-		8717
				gtt Val 2875											8762
				ggc Gly 2890											8807
tgg	ttg	tgg	aaa	gag	tta	ggc	aaa	cac	aaa	cgg	сса	cga	gtc	tgt	8852

5	Λ
5	4

Trp	Leu	Trp	Lys	Glu 2905	Leu	Gly	Lys	His	Lys 2910	Arg	Pro	Arg	Val	Сув 2915	
				ttc Phe 2920											8897
				gaa Glu 2935											8942
				cca Pro 2950											8987
				aga Arg 2965											9032
atg Met	gga Gly	aaa Lys	aga Arg	gaa Glu 2980	aag Lys	aaa Lys	caa Gln	д1 <u>у</u> ддд	gaa Glu 2985	ttt Phe	gga Gly	aag Lys	gcc Ala	aag Lys 2990	9077
				atc Ile 2995											9122
				ctt Leu 3010											9167
				gga Gly 3025											9212
				tta Leu 3040											9257
				gat Asp 3055											9302
				aat Asn 3070											9347
				ttg Leu 3085											9392
				aag Lys 3100											9437
Val	Met	Aab	Ile	att Ile 3115	Ser	Arg	Gln	Asp	Gln 3120	Arg	Gly	Ser	Gly	Gln 3125	9482
Val	Val	Thr	Tyr	gct Ala 3130	Leu	Asn	Thr	Phe	Thr 3135	Asn	Leu	Val	Val	Gln 3140	9527
				atg Met 3145											9572
				cgg Arg 3160											9617
-				gat Asp 3175				-	-	-	-	-		-	9662
				aaa Lys 3190											9707

-continued

58

agg ttc ttg aat gat atg gga aaa gtt agg aag gac aca caa gag Arg Phe Leu Asn Asp Met Gly Lys Val Arg Lys Asp Thr Gln Glu 3205 3210 3215	9752
tgg aag ccc tca act gga tgg gac aac tgg gaa gaa gtt ccg ttt Trp Lys Pro Ser Thr Gly Trp Asp Asn Trp Glu Glu Val Pro Phe 3220 3225 3230	9797
tgc tcc cac cac ttc aac aag ctc cat ctc aag gac ggg agg tcc Cys Ser His His Phe Asn Lys Leu His Leu Lys Asp Gly Arg Ser 3235	9842
att gtg gtt ccc tgc cgc cac caa gat gaa ctg att ggc cga gct Ile Val Val Pro Cys Arg His Gln Asp Glu Leu Ile Gly Arg Ala 3250 3255 3260	9887
cgc gtc tca ccg ggg gcg gga tgg agc atc cgg gag act gct tgc Arg Val Ser Pro Gly Ala Gly Trp Ser Ile Arg Glu Thr Ala Cys 3265 3270 3275	9932
cta gca aaa tca tat gcg caa atg tgg cag ctc ctt tat ttc cac Leu Ala Lys Ser Tyr Ala Gln Met Trp Gln Leu Leu Tyr Phe His 3280 3285 3290	9977
aga agg gac ctc cga ctg atg gcc aat gcc att tgt tca tct gtg Arg Arg Asp Leu Arg Leu Met Ala Asn Ala Ile Cys Ser Ser Val 3295 3300 3305	10022
cca gtt gac tgg gtt cca act ggg aga act acc tgg tca atc cat Pro Val Asp Trp Val Pro Thr Gly Arg Thr Thr Trp Ser Ile His 3310 3315 3320	10067
gga aag gga gaa tgg atg acc act gaa gac atg ctt gtg gtg tgg Gly Lys Gly Glu Trp Met Thr Thr Glu Asp Met Leu Val Val Trp 3325 3330 3335	10112
aac aga gtg tgg att gag gag aac gac cac atg gaa gac aag acc Asn Arg Val Trp Ile Glu Glu Asn Asp His Met Glu Asp Lys Thr 3340 3345 3350	10157
cca gtt acg aaa tgg aca gac att ccc tat ttg gga aaa agg gaa Pro Val Thr Lys Trp Thr Asp Ile Pro Tyr Leu Gly Lys Arg Glu 3355 3360 3365	10202
gac ttg tgg tgt ggg tct ctc ata ggg cac aga ccg cgc acc acc Asp Leu Trp Cys Gly Ser Leu Ile Gly His Arg Pro Arg Thr Thr 3370 3375 3380	10247
tgg gct gag aac att aaa aac aca gtc aac atg atg cgt agg atc Trp Ala Glu Asn Ile Lys Asn Thr Val Asn Met Met Arg Arg Ile 3385 3390 3395	10292
ata ggt gat gaa gaa aag tac gtg gac tac cta tcc acc caa gtt Ile Gly Asp Glu Glu Lys Tyr Val Asp Tyr Leu Ser Thr Gln Val 3400 3405 3410	10337
cgc tac ttg ggc gaa gaa ggg tcc aca cct gga gtg cta taa Arg Tyr Leu Gly Glu Glu Gly Ser Thr Pro Gly Val Leu 3415 3420	10379
gcaccaatct tagtgttgtc aggcctgcta gtcagccaca gcttggggaa agctgtgcag	10439
cctgtgaccc ccccaggaga agctgggaaa ccaagcccat agtcaggccg agaacgccat	10499
ggcacggaag aagccatgct gcctgtgagc ccctcagagg acactgagtc aaaaaacccc	10559
acgcgcttgg aggcgcagga tgggaaaaga aggtggcgac cttccccacc ctttaatctg	10619
gggcctgaac tggagatcag ctgtggatct ccagaagagg gactagtggt tagaggagac	10679
cccccggaaa acgcaaaaca gcatattgac gctgggaaag accagagact ccatgagttt	10739
ccaccacgct ggccgccagg cacagatcgc cgaatagcgg cggccggtgt ggggaaatcc	10799
atgggtct	10807

<210> SEQ ID NO 11 <211> LENGTH: 3423

US 10,240,130 B2

<212> TYPE: PRT <213> ORGANISM: Zika virus <300> PUBLICATION INFORMATION: <308> DATABASE ACCESSION NUMBER: KU955593.1 <309> DATABASE ENTRY DATE: 2016-05-24 <313> RELEVANT RESIDUES IN SEQ ID NO: (1)..(3423) <400> SEQUENCE: 11 Met Lys Asn Pro Lys Lys Lys Ser Gly Gly Phe Arg Ile Val Asn Met Leu Lys Arg Gly Val Ala Arg Val Ser Pro Phe Gly Gly Leu Lys Arg 20 25 30 Leu Pro Ala Gly Leu Leu Leu Gly His Gly Pro Ile Arg Met Val Leu 35 40 45
 Ala Ile Leu Ala Phe Leu Arg Phe Thr Ala Ile Lys Pro Ser Leu Gly

 50
 55
 Leu Ile Asn Arg Trp Gly Ser Val Gly Lys Lys Glu Ala Met Glu Ile 65 70 75 80 Ile Lys Lys Phe Lys Lys Asp Leu Ala Ala Met Leu Arg Ile Ile Asn 85 90 95 Ala Arg Lys Glu Lys Lys Arg Arg Gly Thr Asp Thr Ser Val Gly Ile Val Gly Leu Leu Thr Thr Ala Met Ala Val Glu Val Thr Arg Arg Gly Asn Ala Tyr Tyr Met Tyr Leu Asp Arg Ser Asp Ala Gly Glu Ala Ile Ser Phe Pro Thr Thr Met Gly Met Asn Lys Cys Tyr Ile Gln Ile Met Asp Leu Gly His Met Cys Asp Ala Thr Met Ser Tyr Glu Cys Pro Met Leu Asp Glu Gly Val Glu Pro Asp Asp Val Asp Cys Trp Cys Asn Thr Thr Ser Thr Trp Val Val Tyr Gly Thr Cys His His Lys Lys Gly Glu Ala Arg Arg Ser Arg Arg Ala Val Thr Leu Pro Ser His Ser Thr Arg Lys Leu Gln Thr Arg Ser Gln Thr Trp Leu Glu Ser Arg Glu Tyr Thr Lys His Leu Ile Arg Val Glu Asn Trp Ile Phe Arg Asn Pro Gly Phe Ala Leu Ala Ala Ala Ala Ile Ala Trp Leu Leu Gly Ser Ser Thr 260 265 270 Ser Gln Lys Val Ile Tyr Leu Val Met Ile Leu Leu Ile Ala Pro Ala Tyr Ser Ile Arg Cys Ile Gly Val Ser Asn Arg Asp Phe Val Glu Gly Met Ser Gly Gly Thr Trp Val Asp Val Val Leu Glu His Gly Gly Cys Val Thr Val Met Ala Gln Asp Lys Pro Thr Val Asp Ile Glu Leu Val Thr Thr Thr Val Ser Asn Met Ala Glu Val Arg Ser Tyr Cys Tyr Glu Ala Ser Ile Ser Asp Met Ala Ser Asp Ser Arg Cys Pro Thr Gln Gly Glu Ala Tyr Leu Asp Lys Gln Ser Asp Thr Gln Tyr Val Cys Lys Arg

	370					375					380				
Thr 385	Leu	Val	Asp	Arg	Gly 390	Trp	Gly	Asn	Gly	Сув 395	Gly	Leu	Phe	Gly	Lys 400
Gly	Ser	Leu	Val	Thr 405	Суз	Ala	Lys	Phe	Ala 410	Суз	Ser	Lys	Lys	Met 415	Thr
Gly	Lys	Ser	Ile 420	Gln	Pro	Glu	Asn	Leu 425	Glu	Tyr	Arg	Ile	Met 430	Leu	Ser
Val	His	Gly 435	Ser	Gln	His	Ser	Gly 440	Met	Ile	Val	Asn	Asp 445	Thr	Gly	His
Glu	Thr 450	Asp	Glu	Asn	Arg	Ala 455	Lys	Val	Glu	Ile	Thr 460	Pro	Asn	Ser	Pro
Arg 465	Ala	Glu	Ala	Thr	Leu 470	Gly	Gly	Phe	Gly	Ser 475	Leu	Gly	Leu	Aab	Cys 480
Glu	Pro	Arg	Thr	Gly 485	Leu	Asp	Phe	Ser	Asp 490	Leu	Tyr	Tyr	Leu	Thr 495	Met
Asn	Asn	Lys	His 500	Trp	Leu	Val	His	Lys 505	Glu	Trp	Phe	His	Asp 510	Ile	Pro
Leu	Pro	Trp 515	His	Ala	Gly	Ala	Asp 520	Thr	Gly	Thr	Pro	His 525	Trp	Asn	Asn
Lys	Glu 530	Ala	Leu	Val	Glu	Phe 535	Lys	Asp	Ala	His	Ala 540	Lys	Arg	Gln	Thr
Val 545	Val	Val	Leu	Gly	Ser 550	Gln	Glu	Gly	Ala	Val 555	His	Thr	Ala	Leu	Ala 560
Gly	Ala	Leu	Glu	Ala 565	Glu	Met	Asp	Gly	Ala 570	Lys	Gly	Arg	Leu	Ser 575	Ser
Gly	His	Leu	Lys 580	Сүз	Arg	Leu	Lys	Met 585	Asp	Lys	Leu	Arg	Leu 590	Lys	Gly
Val	Ser	Tyr 595	Ser	Leu	Суз	Thr	Ala 600	Ala	Phe	Thr	Phe	Thr 605	Lys	Ile	Pro
Ala	Glu 610	Thr	Leu	His	Gly	Thr 615	Val	Thr	Val	Glu	Val 620	Gln	Tyr	Ala	Gly
Thr 625	Asp	Gly	Pro	Суз	Lys 630	Val	Pro	Ala	Gln	Met 635	Ala	Val	Asb	Met	Gln 640
Thr	Leu	Thr	Pro	Val 645	Gly	Arg	Leu	Ile	Thr 650	Ala	Asn	Pro	Val	Ile 655	Thr
Glu	Ser	Thr	Glu 660	Asn	Ser	Lys	Met	Met 665	Leu	Glu	Leu	Asb	Pro 670	Pro	Phe
Gly	Asp	Ser 675	Tyr	Ile	Val	Ile	Gly 680	Val	Gly	Glu	ГЛа	Lys 685	Ile	Thr	His
His	Trp 690	His	Arg	Ser	Gly	Ser 695	Thr	Ile	Gly	Lys	Ala 700	Phe	Glu	Ala	Thr
Val 705	Arg	Gly	Ala	ГЛа	Arg 710	Met	Ala	Val	Leu	Gly 715	Asp	Thr	Ala	Trp	Asp 720
Phe	Gly	Ser	Val	Gly 725	Gly	Ala	Leu	Asn	Ser 730	Leu	Gly	ГÀа	Gly	Ile 735	His
Gln	Ile	Phe	Gly 740	Ala	Ala	Phe	Lys	Ser 745	Leu	Phe	Gly	Gly	Met 750	Ser	Trp
Phe	Ser	Gln 755	Ile	Leu	Ile	Gly	Thr 760	Leu	Leu	Val	Trp	Leu 765	Gly	Leu	Asn
Thr	Lys 770	Asn	Gly	Ser	Ile	Ser 775	Leu	Met	Суз	Leu	Ala 780	Leu	Gly	Gly	Val
Leu 785	Ile	Phe	Leu	Ser	Thr 790	Ala	Val	Ser	Ala	Asp 795	Val	Gly	Суз	Ser	Val 800

-continued

Asp Phe Ser Lys Lys Glu Thr Arg	Cys Gly Thr Gly Val Phe Val Tyr
805	810 815
Asn Asp Val Glu Ala Trp Arg Asp	Arg Tyr Lys Tyr His Pro Asp Ser
820	825
Pro Arg Arg Leu Ala Ala Ala Val	Lys Gln Ala Trp Glu Asp Gly Ile
835 840	845
Cys Gly Ile Ser Ser Val Ser Arg	Met Glu Asn Ile Met Trp Arg Ser
850 855	860
Val Glu Gly Glu Leu Asn Ala Ile	Leu Glu Glu Asn Gly Val Gln Leu
865 870	875 880
Thr Val Val Val Gly Ser Val Lys	Asn Pro Met Trp Arg Gly Pro Gln
885	890 895
Arg Leu Pro Val Pro Val Asn Glu	Leu Pro His Gly Trp Lys Ala Trp
900	905 910
Gly Lys Ser Tyr Phe Val Arg Ala	Ala Lys Thr Asn Asn Ser Phe Val
915 920	925
Val Asp Gly Asp Thr Leu Lys Glu	Cys Pro Leu Lys His Arg Ala Trp
930 935	940
Asn Ser Phe Leu Val Glu Asp His	Gly Phe Gly Val Phe His Thr Ser
945 950	955 960
Val Trp Leu Lys Val Arg Glu Asp	Tyr Ser Leu Glu Cys Asp Pro Ala
965	970 975
Val Ile Gly Thr Ala Ala Lys Gly	Lys Glu Ala Val His Ser Asp Leu
980	985
Gly Tyr Trp Ile Glu Ser Glu Lys	Asn Asp Thr Trp Arg Leu Lys Arg
995 1000	0 1005
Ala His Leu Ile Glu Met Lys Tr	hr Cys Glu Trp Pro Lys Ser His
1010 1015	1020
	1020
1010 1015 Thr Leu Trp Thr Asp Gly Ile G1 1025 1030	1020 lu Glu Ser Asp Leu Ile Ile Pro
10101015Thr Leu Trp Thr Asp Gly Ile Gl 10251030Lys Ser Leu Ala Gly Pro Leu Se 10401045	1020 lu Glu Ser Asp Leu Ile Ile Pro 1035 er His His Asn Thr Arg Glu Gly
1010 1015 Thr Leu Trp Thr Asp Gly Ile Gl 1030 1025 1030 Lys Ser Leu Ala Gly Pro Leu Se 1045 1040 1045 Tyr Arg Thr Gln Met Lys Gly Pr 1060	1020 lu Glu Ser Asp Leu Ile Ile Pro 1035 er His His Asn Thr Arg Glu Gly 1050 ro Trp His Ser Glu Glu Leu Glu
1010 1015 Thr Leu Trp Thr Asp Gly Ile Gl 1030 Lys Ser Leu Ala Gly Pro Leu 1045 56 Tyr Arg Thr Gln Met Lys Gly Pro 1065 1060 Ile Arg Phe Glu Glu Cys Pro Gl 61	1020 lu Glu Ser Asp Leu Ile Ile Pro 1035 er His His Asn Thr Arg Glu Gly 1050 ro Trp His Ser Glu Glu Leu Glu 1065 ly Thr Lys Val His Val Glu Glu 1080
10101015ThrLeuTrpThrAspGlyIleGl1025TrpThrAspGlyProLeuGlLysSerLeuAlaGlyProLeuSet1040LeuAlaGlyProLeuSetTyrArgThrGlnMetLysGlyPro1055ThrGlnMetLysGlyProGlIleArgPheGluGluCysProGlThrCysGlyThrArgGlyProSet	1020 lu Glu Ser Asp Leu Ile Ile Pro 1035 er His His Asn Thr Arg Glu Gly 1050 ro Trp His Ser Glu Glu Leu Glu 1065 ly Thr Lys Val His Val Glu Glu 1080 er Leu Arg Ser Thr Thr Ala Ser 1095
10101015ThrLeuTrpThrAspGlyIleGlLysSerLeuAlaGlyProLeuSe1040LeuAlaGlyProLeuSeTyrArgThrGlnMetLysGlyPr1055ThrGlnMetLysGlyPr106010751075Gl1075GlThrCysGlyThrArgGlyProSeGlyArgValIleGluGluTrpCy	1020 lu Glu Ser Asp Leu Ile Ile Pro 1035 er His His Asn Thr Arg Glu Gly ro Trp His Ser Glu Glu Leu Glu 1065 ly Thr Lys Val His Val Glu Glu 1080 er Leu Arg Ser Thr Thr Ala Ser 1095 ys Cys Arg Glu Cys Thr Met Pro 1110
10101015ThrLeuTrpThrAspGlyIleGlLysSerLeuAlaGlyProLeuSet1040LeuAlaGlyProLeuSetTyrArgThrGlnMetLysGlyPro1055ThrGlnMetLysGlyPro1060ThrGluGluCysProGlu1070PheGluGluCysProSetThrCysGlyThrArgGlyProSetGlyArgValIleGluGluTrpCysProLeuSetPheArgAlaLysAs	1020lu Glu Ser AspLeuIle Ile Pro1035Ile Ile Proer His His AsnThrArg Glu Glyro Trp His SerGluGlu Leu Glu1065Glu Leu Gluly Thr Lys ValHisVal Glu Gluer Leu Arg SerThrThr Ala Serys Cys Arg GluCysThr Met Prosp Gly Cys TrpTyrGly Met Glu
10101015ThrLeuTrpThrAspGlyIleGlLysSerLeuAlaGlyProLeuSet1040LeuAlaGlyProLeu1045SetTyrArgThrGlnMetLysGlyPro1055ThrGlnMetLysGlyPro11eArgPheGluGluCysProGlThrCysGlyThrArgGlyProSet1085ValIleGluGluTrpCysProLeuSerPheArgAlaLysAstIleArgProArgLysGluProGluIleArgProArgLysGluProGlu	1020lu Glu Ser AspLeuIle Ile Pro1035Ile Ile Pro1035Arg Glu Glyer His His AsnThrArg Glu Glyro Trp His SerGluGlu Leu Glu1065Glu Leu Glu107Thr Lys ValHisVal Glu Glu Glu1080er Leu Arg SerThr1095Thr Ala Ser1110Thr Met Pro11101125sp Gly Cys TrpTyrGly Met Glu1140Arg Ser Met
10101015ThrLeuTrpThrAspGlyIleGlLysSerLeuAlaGlyProLeuSer1040LeuAlaGlyProLeuSerTyrArgThrGlnMetLysGlyPro1055ThrGlnMetLysGlyPro11eArgPheGluGluCysProGlThrCysGlyThrArgGlyProSerGlyArgValIleGluGluTrpCyProLeuSerPheArgAlaLysAsIleArgProArgLysGluProGluIleArgProArgLysGluProGluIleArgProArgLysGluProGluIlaArgProArgLysGluProGluIlaArgProArgLysGluProGluIlaArgProArgLysGluProGluIlaArgProArgLysGluProGluIlaArgProArgLysArgHiIlaArgProArgLysArgHiIlaArgProArgLysArgHiIlaArgProArgLysF <td>1020lu Glu Ser AspLeu 1035Ile Ile Pro 1035er His His AsnThr 1050Arg Glu Gly 1065ro Trp His SerGlu 1065Glu Leu Glu 1065ly Thr Lys Val His 1080Val Glu Glu 1080er Leu Arg Ser Ys Cys Arg Glu Sp Gly Cys Trp 1125Thr Ala Ser 1110sp Gly Cys Trp 1125Tyr Gly Met Glu 1140lu Ser Asn Leu 1140Val Arg Ser Met 1155is Met Asp His Phe 1155Ser Leu Gly</td>	1020lu Glu Ser AspLeu 1035Ile Ile Pro 1035er His His AsnThr 1050Arg Glu Gly 1065ro Trp His SerGlu 1065Glu Leu Glu 1065ly Thr Lys Val His 1080Val Glu Glu 1080er Leu Arg Ser Ys Cys Arg Glu Sp Gly Cys Trp 1125Thr Ala Ser 1110sp Gly Cys Trp 1125Tyr Gly Met Glu 1140lu Ser Asn Leu 1140Val Arg Ser Met 1155is Met Asp His Phe 1155Ser Leu Gly
10101015ThrLeuTrpThrAspGlyIleGlLysSerLeuAlaGlyProLeuSer1040LeuAlaGlyProLeuSerTyrArgThrGlnMetLysGlyPro1055ThrGlnMetLysGlyPro11eArgPheGluGluCysProGl11eCysGlyThrArgGlyProSer1005GlyThrArgGluGluTrpCysGlyArgValIleGluGluTrpCysProLeuSerPheArgAlaLysAs11eArgProArgLysGluProGlu11a5ProArgLysGluProGlu11a5AlaGlySerThrAspHi1145AlaGlySerThrAspHiValThrAlaGlySerThrAspHi	1020lu Glu Ser Asp His His AsnIle Ile Pro 1035er His His AsnThr 1050Arg Glu Gly Glu Gluro Trp His Ser Iy Thr Lys ValGlu Glu Leu Glu 1065ly Thr Lys Val His 1080Val Glu Glu Glu Glu Gluer Leu Arg Ser Ilo95Thr Ala Ser 1095ys Cys Arg Glu Gly Cys Trp Tyr 1125Gly Met Glu 1140lu Ser Asn Leu I Ser Leu Gly 1155Arg Ser Met 1155al Gln Glu Gly Leu Lys Lys ArgLys Lys Arg

-continued

_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Ala	Ile 1205		Met	Gly	Ala	Thr 1210		Ala	Glu	Met	Asn 1215	Thr	Gly	Gly
Asp	Val 1220		His	Leu	Ala	Leu 1225		Ala	Ala	Phe	Lys 1230		Arg	Pro
Ala	Leu 1235		Val	Ser	Phe	Ile 1240		Arg	Ala	Asn	Trp 1245	Thr	Pro	Arg
Glu	Ser 1250		Leu	Leu	Ala	Leu 1255		Ser	Cys	Leu	Leu 1260	Gln	Thr	Ala
Ile	Ser 1265		Leu	Glu	Gly	Asp 1270		Met	Val	Pro	Ile 1275	Asn	Gly	Phe
Ala	Leu 1280		Trp	Leu	Ala	Ile 1285		Ala	Met	Val	Val 1290	Pro	Arg	Thr
Asp	Asn 1295		Thr	Leu	Ala	Ile 1300		Ala	Ala	Leu	Thr 1305	Pro	Leu	Ala
Arg	Gly 1310		Leu	Leu	Val	Ala 1315		Arg	Ala	Gly	Leu 1320	Ala	Thr	Суа
Gly	Gly 1325		Met	Leu	Leu	Ser 1330		Lys	Gly	Lys	Gly 1335	Ser	Val	ГЛа
Lys	Asn 1340		Pro	Phe	Val	Met 1345	Ala	Leu	Gly	Leu	Thr 1350	Ala	Val	Arg
Leu	Val 1355	_	Pro	Ile	Asn	Val 1360		Gly	Leu	Leu	Leu 1365	Leu	Thr	Arg
Ser	Gly 1370		Arg	Ser	Trp	Pro 1375		Ser	Glu	Val	Leu 1380	Thr	Ala	Val
Gly	Leu 1385		Суз	Ala	Leu	Ala 1390		Gly	Phe	Ala	Lys 1395	Ala	Asp	Ile
Glu	Met 1400		Gly	Pro	Met	Ala 1405		Val	Gly	Leu	Leu 1410	Ile	Val	Ser
Tyr	Val 1415		Ser	Gly	Lys	Ser 1420		Asp	Met	Tyr	Ile 1425	Glu	Arg	Ala
Gly	Asp 1430		Thr	Trp	Glu	Lys 1435		Ala	Glu	Val	Thr 1440	Gly	Asn	Ser
Pro	Arg 1445		Asp	Val	Ala	Leu 1450	-	Glu	Ser	Gly	Asp 1455	Phe	Ser	Leu
Val	Glu 1460		Asp	Gly	Pro	Pro 1465		Arg	Glu	Ile	Ile 1470	Leu	ГЛа	Val
Val					-	Gly 1480					Ala 1485		Pro	Phe
Ala	Ala 1490	Gly	Ala	Trp	Tyr	Val 1495	-	Val	Lys	Thr	Gly 1500	Lys	Arg	Ser
Gly	Ala 1505	Leu	Trp	Asp	Val	Pro 1510	Ala	Pro	Lys	Glu	Val 1515	Lys	Lys	Gly
Glu	Thr 1520	Thr	Aap	Gly	Val	Tyr 1525	Arg	Val	Met	Thr	Arg 1530	Arg	Leu	Leu
Gly	Ser 1535	Thr	Gln	Val	Gly	Val 1540	Gly	Val	Met	Gln	Glu 1545	Gly	Val	Phe
His	Thr 1550	Met	Trp	His	Val	Thr 1555	Lys	Gly	Ser	Ala	Leu 1560	Arg	Ser	Gly
Glu		Arg	Leu	Asp	Pro		Trp	Gly	Asp	Val	Lys 1575	Gln	Asp	Leu
Val	Ser	Tyr	Суа	Gly	Pro	Trp	Lys	Leu	Asp	Ala	Ala	Trp	Asp	Gly
His	1580 Ser	Glu	Val	Gln	Leu	1585 Leu	Ala	Val	Pro	Pro	1590 Gly	Glu	Arg	Ala

	1595					1600					1605			
Arg	Asn 1610	Ile	Gln	Thr	Leu	Pro 1615	Gly	Ile	Phe	Гла	Thr 1620		Asp	Gly
Asp	Ile 1625	Gly	Ala	Val	Ala	Leu 1630	Asp	Tyr	Pro	Ala	Gly 1635		Ser	Gly
Ser	Pro 1640	Ile	Leu	Asp	Lys	Cys 1645	Gly	Arg	Val	Ile	Gly 1650	Leu	Tyr	Gly
Asn	Gly 1655	Val	Val	Ile	Lys	Asn 1660	Gly	Ser	Tyr	Val	Ser 1665	Ala	Ile	Thr
Gln	Gly 1670	Arg	Arg	Glu	Glu	Glu 1675	Thr	Pro	Val	Glu	Cys 1680		Glu	Pro
Ser	Met 1685	Leu	Lys	ГЛа	ГЛа	Gln 1690	Leu	Thr	Val	Leu	Asp 1695	Leu	His	Pro
Gly	Ala 1700	Gly	Lys	Thr	Arg	Arg 1705	Val	Leu	Pro	Glu	Ile 1710		Arg	Glu
Ala	Ile 1715	Lys	Thr	Arg	Leu	Arg 1720	Thr	Val	Ile	Leu	Ala 1725		Thr	Arg
Val	Val 1730	Ala	Ala	Glu	Met	Glu 1735	Glu	Ala	Leu	Arg	Gly 1740	Leu	Pro	Val
Arg	Tyr 1745	Met	Thr	Thr	Ala	Val 1750		Val	Thr	His	Ser 1755	-	Thr	Glu
Ile	Val 1760	Asp	Leu	Met	Сув	His 1765	Ala	Thr	Phe	Thr	Ser 1770	Arg	Leu	Leu
Gln	Pro 1775	Ile	Arg	Val	Pro	Asn 1780	Tyr	Asn	Leu	Tyr	Ile 1785	Met	Asp	Glu
Ala	His 1790	Phe	Thr	Asp	Pro	Ser 1795	Ser	Ile	Ala	Ala	Arg 1800	Gly	Tyr	Ile
Ser	Thr 1805	Arg	Val	Glu	Met	Gly 1810	Glu	Ala	Ala	Ala	Ile 1815		Met	Thr
Ala	Thr 1820	Pro	Pro	Gly	Thr	Arg 1825	Asp	Ala	Phe	Pro	Asp 1830	Ser	Asn	Ser
Pro	Ile 1835	Met	Asp	Thr	Glu	Val 1840	Glu	Val	Pro	Glu	Arg 1845	Ala	Trp	Ser
Ser	Gly 1850	Phe	Asp	Trp	Val	Thr 1855	Asp	His	Ser	Gly	Lys 1860	Thr	Val	Trp
Phe	Val 1865	Pro	Ser	Val	Arg	Asn 1870	Gly	Asn	Glu	Ile	Ala 1875	Ala	Суз	Leu
Thr	Lys 1880	Ala	Gly	Lys	Arg	Val 1885	Ile	Gln	Leu	Ser	Arg 1890	Lys	Thr	Phe
Glu	Thr 1895	Glu	Phe	Gln	Lys	Thr 1900	Lys	His	Gln	Glu	Trp 1905	_	Phe	Val
Val	Thr 1910	Thr	Asp	Ile	Ser	Glu 1915	Met	Gly	Ala	Asn	Phe 1920		Ala	Asp
Arg	Val 1925	Ile	Asp	Ser	Arg	Arg 1930	Cys	Leu	Lys	Pro	Val 1935	Ile	Leu	Asp
Gly	Glu 1940	Arg	Val	Ile	Leu	Ala 1945	Gly	Pro	Met	Pro	Val 1950	Thr	His	Ala
Ser	Ala 1955	Ala	Gln	Arg	Arg	Gly 1960	Arg	Ile	Gly	Arg	Asn 1965	Pro	Asn	Гла
Pro	Gly 1970	Asp	Glu	Tyr	Leu	Tyr 1975	Gly	Gly	Gly	Суз	Ala 1980		Thr	Asp
Glu	Asp 1985	His	Ala	His	Trp	Leu 1990	Glu	Ala	Arg	Met	Leu 1995	Leu	Asp	Asn

Ile	Tyr 2000	Leu	Gln	Asp	Gly	Leu 2005		Ala	Ser	Leu	Tyr 2010	Arg	Pro	Glu
Ala	Asp 2015	Lys	Val	Ala	Ala	Ile 2020		Gly	Glu	Phe	Lys 2025	Leu	Arg	Thr
Glu	Gln 2030	Arg	Lys	Thr	Phe	Val 2035		Leu	Met	Lys	Arg 2040	Gly	Asp	Leu
Pro	Val 2045	Trp	Leu	Ala	Tyr	Gln 2050		Ala	Ser	Ala	Gly 2055	Ile	Thr	Tyr
Thr	Asp 2060	Arg	Arg	Trp	Суз	Phe 2065	Aab	Gly	Thr	Thr	Asn 2070	Asn	Thr	Ile
Met	Glu 2075	Asp	Ser	Val	Pro	Ala 2080		Val	Trp	Thr	Arg 2085	Tyr	Gly	Glu
Lys	Arg 2090	Val	Leu	Lys	Pro	Arg 2095		Met	Asp	Ala	Arg 2100	Val	Сүз	Ser
Asp	His 2105	Ala	Ala	Leu	Lys	Ser 2110		Lys	Glu	Phe	Ala 2115	Ala	Gly	Lys
Arg	Gly 2120	Ala	Ala	Phe	Gly	Val 2125		Glu	Ala	Leu	Gly 2130	Thr	Leu	Pro
Gly	His 2135	Met	Thr	Glu	Arg	Phe 2140		Glu	Ala	Ile	Asp 2145	Asn	Leu	Ala
Val	Leu 2150	Met	Arg	Ala	Glu	Thr 2155		Ser	Arg	Pro	Tyr 2160	-	Ala	Ala
Ala	Ala 2165	Gln	Leu	Pro	Glu	Thr 2170		Glu	Thr	Ile	Met 2175	Leu	Leu	Gly
Leu	Leu 2180	Gly	Thr	Val	Ser	Leu 2185	Gly	Ile	Phe	Phe	Val 2190	Leu	Met	Arg
Asn	Lys 2195	Gly	Ile	Gly	Lys	Met 2200		Phe	Gly	Met	Val 2205	Thr	Leu	Gly
Ala	Ser 2210	Ala	Trp	Leu	Met	Trp 2215		Ser	Glu	Ile	Glu 2220	Pro	Ala	Arg
Ile	Ala 2225	Сув	Val	Leu	Ile	Val 2230		Phe	Leu	Leu	Leu 2235	Val	Val	Leu
Ile	Pro 2240	Glu	Pro	Glu	Lys	Gln 2245	Arg	Ser	Pro	Gln	Asp 2250	Asn	Gln	Met
Ala	Ile 2255	Ile	Ile	Met	Val	Ala 2260		Gly	Leu	Leu	Gly 2265	Leu	Ile	Thr
Ala	Asn 2270	Glu	Leu	Gly	Trp	Leu 2275	Glu	Arg	Thr	ГЛЗ	Ser 2280	Asp	Leu	Ser
His	Leu 2285	Met	Gly	Arg	Arg	Glu 2290		Gly	Ala	Thr	Ile 2295	Gly	Phe	Ser
Met	Asp 2300	Ile	Asp	Leu	Arg	Pro 2305	Ala	Ser	Ala	Trp	Ala 2310		Tyr	Ala
Ala	Leu 2315	Thr	Thr	Phe	Ile	Thr 2320		Ala	Val	Gln	His 2325	Ala	Val	Thr
Thr	Ser 2330	Tyr	Asn	Asn	Tyr	Ser 2335		Met	Ala	Met	Ala 2340		Gln	Ala
Gly	Val 2345	Leu	Phe	Gly	Met	Gly 2350		Gly	Met	Pro	Phe 2355	Tyr	Ala	Trp
Asp	Phe 2360	Gly	Val	Pro	Leu	Leu 2365		Ile	Gly	Сүз	Tyr 2370	Ser	Gln	Leu
Thr	Pro 2375	Leu	Thr	Leu	Ile	Val 2380		Ile	Ile	Leu	Leu 2385	Val	Ala	His

Tyr	Met 2390	Tyr	Leu	Ile	Pro	Gly 2395	Leu	Gln	Ala	Ala	Ala 2400	Ala	Arg	Ala
Ala	Gln 2405	Lys	Arg	Thr	Ala	Ala 2410	Gly	Ile	Met	Lys	Asn 2415	Pro	Val	Val
Asp	Gly 2420	Ile	Val	Val	Thr	Asp 2425	Ile	Asp	Thr	Met	Thr 2430	Ile	Asp	Pro
Gln	Val 2435	Glu	Lys	Lys	Met	Gly 2440	Gln	Val	Leu	Leu	Ile 2445	Ala	Val	Ala
Val	Ser 2450	Ser	Ala	Ile	Leu	Ser 2455	Arg	Thr	Ala	Trp	Gly 2460	Trp	Gly	Glu
Ala	Gly 2465	Ala	Leu	Ile	Thr	Ala 2470	Ala	Thr	Ser	Thr	Leu 2475	Trp	Glu	Gly
Ser	Pro 2480	Asn	Lys	Tyr	Trp	Asn 2485	Ser	Ser	Thr	Ala	Thr 2490	Ser	Leu	СЛа
Asn	Ile 2495	Phe	Arg	Gly	Ser	Tyr 2500	Leu	Ala	Gly	Ala	Ser 2505	Leu	Ile	Tyr
Thr	Val 2510	Thr	Arg	Asn	Ala	Gly 2515	Leu	Val	Lys	Arg	Arg 2520	Gly	Gly	Gly
Thr	Gly 2525	Glu	Thr	Leu	Gly	Glu 2530	Lys	Trp	Lys	Ala	Arg 2535	Leu	Asn	Gln
Met	Ser 2540	Ala	Leu	Glu	Phe	Tyr 2545	Ser	Tyr	ГÀа	LÀa	Ser 2550	Gly	Ile	Thr
Glu	Val 2555	Сүз	Arg	Glu	Glu	Ala 2560	Arg	Arg	Ala	Leu	Lys 2565	Asp	Gly	Val
Ala	Thr 2570	Gly	Gly	His	Ala	Val 2575	Ser	Arg	Gly	Ser	Ala 2580	Lys	Leu	Arg
Trp	Leu 2585	Val	Glu	Arg	Gly	Tyr 2590	Leu	Gln	Pro	Tyr	Gly 2595	Lys	Val	Ile
Asp	Leu 2600	Gly	Сүз	Gly	Arg	Gly 2605	Gly	Trp	Ser	Tyr	Tyr 2610	Ala	Ala	Thr
Ile	Arg 2615	Lys	Val	Gln	Glu	Val 2620	_	Gly	Tyr	Thr	Lys 2625	Gly	Gly	Pro
Gly	His 2630	Glu	Glu	Pro	Met	Leu 2635	Val	Gln	Ser	Tyr	Gly 2640	Trp	Asn	Ile
Val	Arg 2645	Leu	Lys	Ser	Gly	Val 2650	Asp	Val	Phe	His	Met 2655	Ala	Ala	Glu
Pro	Сув 2660	Asp	Thr	Leu	Leu	Сув 2665	Asp	Ile	Gly	Glu	Ser 2670	Ser	Ser	Ser
Pro	Glu 2675	Val	Glu	Glu	Ala	Arg 2680	Thr	Leu	Arg	Val	Leu 2685	Ser	Met	Val
Gly	Asp 2690	Trp	Leu	Glu	Lys	Arg 2695	Pro	Gly	Ala	Phe	Cys 2700	Ile	ГЛа	Val
Leu	Cys 2705	Pro	Tyr	Thr	Ser	Thr 2710	Met	Met	Glu	Thr	Leu 2715	Glu	Arg	Leu
Gln	Arg 2720	Arg	Tyr	Gly	Gly	Gly 2725	Leu	Val	Arg	Val	Pro 2730	Leu	Ser	Arg
Asn	Ser 2735	Thr	His	Glu	Met	Tyr 2740		Val	Ser	Gly	Ala 2745		Ser	Asn
Thr	Ile 2750	Lys	Ser	Val	Ser	Thr 2755		Ser	Gln	Leu	Leu 2760	Leu	Gly	Arg
Met	Asp 2765	Gly	Pro	Arg	Arg	Pro 2770		Lys	Tyr	Glu	Glu 2775	Asp	Val	Asn
Leu	Gly	Ser	Gly	Thr	Arg	Ala	Val	Val	Ser	Суз	Ala	Glu	Ala	Pro

	2780					2785					2790			
Asn	Met 2795	Lys	Ile	Ile	Gly	Asn 2800	Arg	Ile	Glu	Arg	Ile 2805		Ser	Glu
His	Ala 2810	Glu	Thr	Trp	Phe	Phe 2815	Asp	Glu	Asn	His	Pro 2820		Arg	Thr
Trp	Ala 2825	Tyr	His	Gly	Ser	Tyr 2830	Glu	Ala	Pro	Thr	Gln 2835	Gly	Ser	Ala
Ser	Ser 2840	Leu	Ile	Asn	Gly	Val 2845	Val	Arg	Leu	Leu	Ser 2850		Pro	Trp
Asp	Val 2855	Val	Thr	Gly	Val	Thr 2860	Gly	Ile	Ala	Met	Thr 2865		Thr	Thr
Pro	Tyr 2870	Gly	Gln	Gln	Arg	Val 2875	Phe	Lys	Glu	Lys	Val 2880	-	Thr	Arg
Val	Pro 2885	Asp	Pro	Gln	Glu	Gly 2890	Thr	Arg	Gln	Val	Met 2895	Ser	Met	Val
Ser	Ser 2900	Trp	Leu	Trp	Lys	Glu 2905	Leu	Gly	Lys	His	Lys 2910	-	Pro	Arg
Val	Cys 2915	Thr	Гла	Glu	Glu	Phe 2920	Ile	Asn	Lys	Val	Arg 2925	Ser	Asn	Ala
Ala	Leu 2930	Gly	Ala	Ile	Phe	Glu 2935	Glu	Glu	Lys	Glu	Trp 2940		Thr	Ala
Val	Glu 2945	Ala	Val	Asn	Asp	Pro 2950	Arg	Phe	Trp	Ala	Leu 2955	Val	Asp	Гла
Glu	Arg 2960	Glu	His	His	Leu	Arg 2965	Gly	Glu	СЛа	Gln	Ser 2970		Val	Tyr
Asn	Met 2975	Met	Gly	Lys	Arg	Glu 2980	Lys	ГЛа	Gln	Gly	Glu 2985	Phe	Gly	Гла
Ala	Lys 2990	Gly	Ser	Arg	Ala	Ile 2995	Trp	Tyr	Met	Trp	Leu 3000		Ala	Arg
Phe	Leu 3005	Glu	Phe	Glu	Ala	Leu 3010	Gly	Phe	Leu	Asn	Glu 3015	Asp	His	Trp
Met	Gly 3020	Arg	Glu	Asn	Ser	Gly 3025	Gly	Gly	Val	Glu	Gly 3030	Leu	Gly	Leu
Gln	Arg 3035	Leu	Gly	Tyr	Val	Leu 3040	Glu	Glu	Met	Ser	Arg 3045	Ile	Pro	Gly
Gly	Arg 3050	Met	Tyr	Ala		Asp 3055	Thr	Ala	Gly	Trp	Asp 3060		Arg	Ile
Ser	Arg 3065	Phe	Asp	Leu	Glu	Asn 3070	Glu	Ala	Leu	Ile	Thr 3075	Asn	Gln	Met
Glu	Lys 3080	Gly	His	Arg	Ala	Leu 3085	Ala	Leu	Ala	Ile	Ile 3090	-	Tyr	Thr
Tyr	Gln 3095	Asn	Lys	Val	Val	Lys 3100	Val	Leu	Arg	Pro	Ala 3105		Lys	Gly
Lys	Thr 3110	Val	Met	Asp	Ile	Ile 3115	Ser	Arg	Gln	Aap	Gln 3120	Arg	Gly	Ser
Gly	Gln 3125	Val	Val	Thr	Tyr	Ala 3130	Leu	Asn	Thr	Phe	Thr 3135	Asn	Leu	Val
Val	Gln 3140	Leu	Ile	Arg	Asn	Met 3145	Glu	Ala	Glu	Glu	Val 3150		Glu	Met
Gln	Asp 3155	Leu	Trp	Leu	Leu	Arg 3160	Arg	Ser	Glu	Lys	Val 3165	Thr	Asn	Trp
Leu	Gln 3170	Ser	Asn	Gly	Trp	Asp 3175	Arg	Leu	Lys	Arg	Met 3180		Val	Ser

Gly	Asp 3185	-	Сув	Val	Val	Lys 3190	Pro	Ile	Asp	Asp	Arg 3195	Phe	Ala	His
Ala	Leu 3200	Arg	Phe	Leu	Asn	Asp 3205	Met	Gly	Lys	Val	Arg 3210	Lys	Asp	Thr
Gln	Glu 3215	Trp	Lys	Pro	Ser	Thr 3220	Gly	Trp	Asp	Asn	Trp 3225	Glu	Glu	Val
Pro	Phe 3230		Ser	His	His	Phe 3235		Lys	Leu	His	Leu 3240	Lys	Asp	Gly
Arg	Ser 3245	Ile	Val	Val	Pro	Cys 3250	Arg	His	Gln	Asp	Glu 3255	Leu	Ile	Gly
Arg	Ala 3260	Arg	Val	Ser	Pro	Gly 3265	Ala	Gly	Trp	Ser	Ile 3270	Arg	Glu	Thr
Ala	Cys 3275	Leu	Ala	Lys	Ser	Tyr 3280	Ala	Gln	Met	Trp	Gln 3285	Leu	Leu	Tyr
Phe	His 3290	-	Arg	Asp	Leu	Arg 3295		Met	Ala	Asn	Ala 3300	Ile	Сүз	Ser
Ser	Val 3305	Pro	Val	Asp	Trp	Val 3310	Pro	Thr	Gly	Arg	Thr 3315	Thr	Trp	Ser
Ile	His 3320		Lys	Gly	Glu	Trp 3325	Met	Thr	Thr	Glu	Asp 3330	Met	Leu	Val
Val	Trp 3335	Asn	Arg	Val	Trp	Ile 3340	Glu	Glu	Asn	Asp	His 3345	Met	Glu	Asp
Lys	Thr 3350	Pro	Val	Thr	Lys	Trp 3355	Thr	Aab	Ile	Pro	Tyr 3360	Leu	Gly	Lys
Arg	Glu 3365	Asp	Leu	Trp	Суз	Gly 3370	Ser	Leu	Ile	Gly	His 3375	Arg	Pro	Arg
Thr	Thr 3380	Trp	Ala	Glu	Asn	Ile 3385	Lys	Asn	Thr	Val	Asn 3390	Met	Met	Arg
Arg	Ile 3395		Gly	Asp	Glu	Glu 3400		Tyr	Val	Asp	Tyr 3405	Leu	Ser	Thr
Gln	Val 3410	Arg	Tyr	Leu	Gly	Glu 3415	Glu	Gly	Ser	Thr	Pro 3420	Gly	Val	Leu

The invention claimed is:

script of the cDNA clone, or variant ZIKV strain which has been mutated to introduce at least one substitution mutation in at least one of the encoded ZIKV proteins, wherein said at least one substitution mutation comprises one or more of the following: NS1 K265E, prM H83R and NS3 S356F. 50

2. The cDNA clone, RNA transcript, or strain of claim 1, wherein the encoded ZIKV NS1 protein comprises a K265E substitution mutation.

3. The cDNA clone, RNA transcript, or strain of claim 1, wherein the encoded ZIKV proteins in the variant comprise 55 one of the following combinations of substitution mutations: (a) NS1 K265E, prM H83R and NS3 S356F; (b) NS1 K265E and prM H83R; or (c) NS1 K265E and NS3 S356F.

4. The cDNA clone, RNA transcript, or strain of claim 1 wherein the encoded ZIKV proteins in the variant further 60 comprises one or more of the following substitution mutations: prM H83R, NS3 S356F, E R283W, E H219L, E L441L, E K443N, E T315I, E H401Y, E A501T, NS1 R103K, and NS1 W98L.

5. The cDNA clone, RNA transcript, or strain of claim 1, 65 which is a variant of one of the following: a cDNA clone of a North or South American ZIKV strain, an RNA transcript

of the cDNA clone of a North or South American ZIKV 1. A variant Zika virus (ZIKV) cDNA clone, RNA tran- 45 strain, or a North or South American ZIKV strain.

> 6. The cDNA clone, RNA transcript, or strain of claim 1, which is a variant of one of the following:

- (i) a cDNA clone of a strain selected from the group consisting of MR766-NIID, P6-740, ArD7117, IbH_30656, ArB1362, ARB13565, ARB7701, ARB15076, ArD_41519, ArD128000, ArD158084, ArD157995, FSM, FSS13025, PHL/2012/CPC-0740-Asian, H/PF/2013, PLCal_ZV, Haiti/1225/2014, SV0127_14_Asian, Natal_RGN_Asian, Brazil_ZKV2015_Asian, ZikaSPH2015, BeH815744, BeH819015, BeH819966, BeH823339, BeH828305, SSABR1-Asian, FLR, 103344, 8375, PRVABC59, Z1106033, MRS_OPY_Martinique, VE_Ganxian_Asian, GD01_Asian, GDZ16001, ZJO3, Rio-U1 and Rio-S1;
- (ii) an RNA transcript of the cDNA clone of a strain selected from the group consisting of MR766-NIID, P6-740, ArD7117, IbH_30656, ArB1362, ARB13565, ARB7701, ARB15076, ArD 41519, ArD128000, ArD158084, ArD157995, FSM, FSS13025, PHL/2012/ CPC-0740-Asian, H/PF/2013, PLCal_ZV, Haiti/1225/ 2014, SV0127_14_Asian, Natal_RGN_Asian,

Brazil_ZKV2015_Asian, ZikaSPH2015, BeH815744, BeH819015, BeH819966, BeH823339, BeH828305, SSABR1-Asian, FLR, 103344, 8375, PRVABC59, Z1106033, MRS_OPY_Martinique, VE_Ganxian_Asian, GD01_Asian, GDZ16001, ZJO3, Rio-U1 and ⁵ Rio-S1: or

(iii) a strain selected from the group consisting of MR766-NIID, P6-740, ArD7117, IbH_30656, ArB1362, ARB13565, ARB7701, ARB15076, ArD_41519, 10 ArD128000, ArD158084, ArD157995, FSM. FSS13025, PHL/2012/CPC-0740-Asian, H/PF/2013, PLCal_ZV, Haiti/1225/2014, SV0127_14_Asian, Natal_RGN_Asian, Brazil_ZKV2015_Asian, ZikaSPH2015, BeH815744, BeH819015, BeH819966, 15 BeH823339, BeH828305, SSABR1-Asian, FLR, 103344, 8375, PRVABC59, Z1106033, MRS_OPY_ VE_Ganxian_Asian, Martinique, GD01 Asian, GDZ16001, ZJO3, Rio-U1 and Rio-S1.

7. The cDNA clone, RNA transcript, or strain of claim 1, $_{20}$ wherein the strain is a variant of PRVABC59 or FSS13025.

8. The cDNA clone, RNA transcript, or strain of claim **1**, which (i) provides increased yield of ZIKV production in cells as compared to the corresponding wildtype ZIKV cDNA clone, RNA transcript, or strain lacking these substitution mutations; and/or (ii) provides enhanced ZIKV assembly as compared to a corresponding wildtype ZIKV cDNA clone, RNA transcript, or strain lacking these substitution mutations.

9. The cDNA clone, RNA transcript, or strain of claim **8**, 30 wherein the cells used to produce ZIKVs are selected from one of the following types of cells: (i) eukaryotic cells; (ii) mammalian cells; (iii) mouse or human cells; (iv) Vero cells, Huh7 cells, LLC-MK-2 cells, Hep-2 cells, LF 1043 (HEL) cells, MRC-5 cells, WI-38 cells, tMK cells, 293 T cells, QT 35 cells, or chicken embryo fibroblasts (CEF); and (v) Vero cells or Huh7 cells.

10. The cDNA clone, RNA transcript, or strain of claim **1** which is an infectious cDNA clone, RNA transcript, or strain.

11. The cDNA clone, RNA transcript, or strain of claim 1 which is further modified to include at least one additional mutation which results in a substitution, addition or deletion mutation in at least one Zika protein, preferably NS1, NS3 or prm, wherein said additional modification does not

adversely impact the efficacy of the resultant cDNA clone, RNA transcript, or strain for use in vaccines.

12. A method for producing ZIKV for vaccine manufacture, comprising producing additional copies of the cDNA clone, RNA transcript, or strain of claim **1** in a suitable system thereby obtaining additional ZIKV variants suitable for use in the manufacture of ZIKV vaccines.

13. The method of claim **12**, wherein the suitable system comprises producing the ZIKV in cells.

14. The method of claim 13, wherein the cells are selected from one of the following groups: (i) eukaryotic cells; (ii) mammalian cells; (iii) mouse or human cells; (iv) Vero cells, Huh7 cells, LLC-MK-2 cells, Hep-2 cells, LF 1043 (HEL) cells, MRC-5 cells, WI-38 cells, tMK cells, 293 T cells, QT 6 cells, QT 35 cells, or chicken embryo fibroblasts (CEF); and (v) Vero cells or Huh7 cells.

15. The method of claim **12**, wherein the produced ZIKV variants are attenuated or inactivated.

16. A variant ZIKV cDNA clone, RNA transcript of the cDNA clone, or variant ZIKV strain comprising a substitution mutation corresponding to A3282G in the ZIKV genome, wherein the A3282G substitution results in a K265E substitution in the NS1 protein upon expression of the cDNA clone, RNA transcript or strain.

17. An immunogenic composition comprising at least one variant ZIKV strain according to claim 1, and at least one pharmaceutically acceptable carrier or excipient, wherein the strain is attenuated or inactivated.

18. The immunogenic composition of claim **17**, which is suitable for parenteral or enteral administration.

19. A method of eliciting an immune response in a subject in need thereof by administering a composition comprising a prophylactically or therapeutically effective amount of a variant ZIKV strain according to claim **1**, or an immunogenic composition containing, wherein the ZIKV strain is attenuated or inactivated.

20. The method of claim **19**, which (i) induces a CD8⁺ T cell response, an antibody response, and/or a cellular immune response against ZIKV; (ii) produces a neutralizing antibody titer equivalent to that of wildtype ZIKV infection; (iii) is used to prevent congenital ZIKV syndrome and/or microcephaly; (iv) prevents viremia in said subject after subsequent challenge with a wildtype ZIKV strain and/or the subject is a human and/or a pregnant female.

* * * * *